Distribution and Evolution of Nitrogen Fixation Genes in the Phylum Bacteroidetes

Diazotrophs had not previously been identified among bacterial species in the phylum Bacteroidetes until the rapid expansion of bacterial genome sequences, which revealed the presence of nitrogen fixation (nif) genes in this phylum. We herein determined the draft genome sequences of Bacteroides graminisolvens JCM 15093(T) and Geofilum rubicundum JCM 15548(T). In addition to these and previously reported 'Candidatus Azobacteroides pseudotrichonymphae' and Paludibacter propionicigenes, an extensive survey of the genome sequences of diverse Bacteroidetes members revealed the presence of a set of nif genes (nifHDKENB) in strains of Dysgonomonas gadei, Dysgonomonas capnocytophagoides, Saccharicrinis fermentans, and Alkaliflexus imshenetskii. These eight species belonged to and were distributed sporadically within the order Bacteroidales. Acetylene reduction activity was detected in the five species examined, strongly suggesting their diazotrophic nature. Phylogenetic analyses showed monophyletic clustering of the six Nif protein sequences in the eight Bacteroidales species, implying that nitrogen fixation is ancestral to Bacteroidales and has been retained in these species, but lost in many other lineages. The identification of nif genes in Bacteroidales facilitates the prediction of the organismal origins of related sequences directly obtained from various environments.

[1]  M. Ohkuma,et al.  Description of Mariniphaga anaerophila gen. nov., sp. nov., a facultatively aerobic marine bacterium isolated from tidal flat sediment, reclassification of the Draconibacteriaceae as a later heterotypic synonym of the Prolixibacteraceae and description of the family Marinifilaceae fam. nov. , 2014, International journal of systematic and evolutionary microbiology.

[2]  Sung‐Hyun Yang,et al.  Carboxylicivirga gen. nov. in the family Marinilabiliaceae with two novel species, Carboxylicivirga mesophila sp. nov. and Carboxylicivirga taeanensis sp. nov., and reclassification of Cytophaga fermentans as Saccharicrinis fermentans gen. nov., comb. nov. , 2014, International journal of systematic and evolutionary microbiology.

[3]  M. Hattori,et al.  Draft Genome Sequence of Cytophaga fermentans JCM 21142T, a Facultative Anaerobe Isolated from Marine Mud , 2014, Genome Announcements.

[4]  Fazuo Wang,et al.  Mangrovibacterium diazotrophicum gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove sediment, and proposal of Prolixibacteraceae fam. nov. , 2014, International journal of systematic and evolutionary microbiology.

[5]  M. Hattori,et al.  Draft Genome Sequence of Bacteroides reticulotermitis Strain JCM 10512T, Isolated from the Gut of a Termite , 2014, Genome Announcements.

[6]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[7]  M. Sakamoto,et al.  Bacteroides reticulotermitis sp. nov., isolated from the gut of a subterranean termite (Reticulitermes speratus). , 2013, International journal of systematic and evolutionary microbiology.

[8]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[9]  A. Brune,et al.  Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites , 2011, The ISME Journal.

[10]  Tohru Kobayashi,et al.  Geofilum rubicundum gen. nov., sp. nov., isolated from deep subseafloor sediment. , 2012, International journal of systematic and evolutionary microbiology.

[11]  J. Setubal,et al.  Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes , 2012, BMC Genomics.

[12]  Akifumi S. Tanabe,et al.  Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data , 2011, Molecular ecology resources.

[13]  N. Kyrpides,et al.  Complete genome sequence of Paludibacter propionicigenes type strain (WB4T) , 2011, Standards in genomic sciences.

[14]  D. Rees,et al.  Structure of Precursor-Bound NifEN: A Nitrogenase FeMo Cofactor Maturase/Insertase , 2011, Science.

[15]  Miriam,et al.  Complete genome sequence of Paludibacter propionicigenes type strain (WB4) , 2011 .

[16]  S. R. Barnum,et al.  Inferring the Evolutionary History of Mo-Dependent Nitrogen Fixation from Phylogenetic Studies of nifK and nifDK , 2010, Journal of Molecular Evolution.

[17]  K. Nelson,et al.  Comparative Genome Analysis of Prevotella ruminicola and Prevotella bryantii: Insights into Their Environmental Niche , 2010, Microbial Ecology.

[18]  Y. Hongoh Diversity and Genomes of Uncultured Microbial Symbionts in the Termite Gut , 2010, Bioscience, biotechnology, and biochemistry.

[19]  H. Hertel,et al.  Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). , 2009, Environmental microbiology.

[20]  M. Ohkuma,et al.  Role of the Termite Gut Microbiota in Symbiotic Digestion , 2010 .

[21]  L. Alvarez-Cohen,et al.  Evidence for Nitrogen Fixation by “Dehalococcoides ethenogenes” Strain 195 , 2009, Applied and Environmental Microbiology.

[22]  Kazuya Watanabe,et al.  Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. , 2009, International journal of systematic and evolutionary microbiology.

[23]  Tomoyuki Sato,et al.  Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites , 2009, BMC Evolutionary Biology.

[24]  Yoshiyuki Sakaki,et al.  Genome of an Endosymbiont Coupling N2 Fixation to Cellulolysis Within Protist Cells in Termite Gut , 2008, Science.

[25]  M. Ohkuma Symbioses of flagellates and prokaryotes in the gut of lower termites. , 2008, Trends in microbiology.

[26]  J. Caballero-Mellado,et al.  Multichromosomal Genome Structure and Confirmation of Diazotrophy in Novel Plant-Associated Burkholderia Species , 2008, Applied and Environmental Microbiology.

[27]  Tomoyuki Sato,et al.  Candidatus Symbiothrix dinenymphae: bristle-like Bacteroidales ectosymbionts of termite gut protists. , 2007, Environmental microbiology.

[28]  M. Ohkuma,et al.  Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood‐feeding termites , 2007, Molecular ecology.

[29]  T. Kudo,et al.  Identification and in situ Detection of Two Lineages of Bacteroidales Ectosymbionts Associated with a Termite Gut Protist, Oxymonas sp. , 2006 .

[30]  T. Kudo,et al.  Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. , 2006, Environmental microbiology.

[31]  H. Akasaka,et al.  Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. , 2006, International journal of systematic and evolutionary microbiology.

[32]  T. Kudo,et al.  Endosymbiotic Bacteroidales Bacteria of the Flagellated Protist Pseudotrichonympha grassii in the Gut of the Termite Coptotermes formosanus , 2005, Applied and Environmental Microbiology.

[33]  G. Zavarzin,et al.  Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake , 2004, Archives of Microbiology.

[34]  Jason Raymond,et al.  The natural history of nitrogen fixation. , 2004, Molecular biology and evolution.

[35]  T. Stanton,et al.  Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria , 1980, Archives of Microbiology.

[36]  Jonathan P Zehr,et al.  Nitrogenase gene diversity and microbial community structure: a cross-system comparison. , 2003, Environmental microbiology.

[37]  T. Kudo,et al.  Nitrogen Fixation Genes Expressed in the Symbiotic Microbial Community in the Gut of the Termite Coptotermes formosanus , 2002 .

[38]  T. Kudo,et al.  Diverse Bacteria Related to the Bacteroides Subgroup of the CFB Phylum within the Gut Symbiotic Communities of Various Termites , 2002, Bioscience, biotechnology, and biochemistry.

[39]  Jared R. Leadbetter,et al.  Nitrogen Fixation by Symbiotic and Free-Living Spirochetes , 2001, Science.

[40]  M. Merrick,et al.  PII Signal Transduction Proteins, Pivotal Players in Microbial Nitrogen Control , 2001, Microbiology and Molecular Biology Reviews.

[41]  P. Lawson,et al.  Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). , 2000, International journal of systematic and evolutionary microbiology.

[42]  Pietro Liò,et al.  Molecular Evolution of Nitrogen Fixation: The Evolutionary History of the nifD, nifK, nifE, and nifN Genes , 2000, Journal of Molecular Evolution.

[43]  T. Kudo,et al.  Phylogenetic Diversity of Nitrogen Fixation Genes in the Symbiotic Microbial Community in the Gut of Diverse Termites , 1999, Applied and Environmental Microbiology.

[44]  Moriya Ohkuma,et al.  Culture-Independent Characterization of a Gene Responsible for Nitrogen Fixation in the Symbiotic Microbial Community in the Gut of the Termite Neotermes koshunensis , 1999, Applied and Environmental Microbiology.

[45]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[46]  H. Flint,et al.  Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. , 1997, International journal of systematic bacteriology.

[47]  R Usami,et al.  Diversity of Nitrogen Fixation Genes in the Symbiotic Intestinal Microflora of the Termite Reticulitermes speratus , 1996, Applied and environmental microbiology.

[48]  A. Brauman,et al.  Clostridium termitidis sp. nov., a Cellulolytic Bacterium from the Gut of the Wood-feeding Termite, Nasutitermes lujae , 1992 .

[49]  M. Weiss,et al.  Products of the iron-molybdenum cofactor-specific biosynthetic genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifD and nifK , 1987, Journal of bacteriology.

[50]  B. Bachmann Studies on Cytophaga fermentans, n.sp., a facultatively anaerobic lower myxobacterium. , 1955, Journal of general microbiology.

[51]  R. E. Hungate,et al.  The anaerobic mesophilic cellulolytic bacteria. , 1950, Bacteriological reviews.