Optimal multi-scale matching

The coarse-to-fine search strategy is extensively used in current reported research. However, it has the same problem as any hill climbing algorithm, most importantly, it often finds local instead of global minima. Drawing upon the artificial intelligence literature, we applied an optimal graph search, namely A*, to the problem. Using real stereo and video test sets, we compared the A* method to both template and hill climbing. Our results show that A* has greater accuracy than the ubiquitous coarse-to-fine hill climbing pyramidal search algorithm in both stereo matching and motion tracking.

[1]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[2]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[3]  Hans P. Morevec Towards automatic visual obstacle avoidance , 1977, IJCAI 1977.

[4]  Hans P. Moravec Towards Automatic Visual Obstacle Avoidance , 1977, IJCAI.

[5]  W. Eric L. Grimson,et al.  From images to surfaces , 1981 .

[6]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Eric L. W. Grimson,et al.  From Images to Surfaces: A Computational Study of the Human Early Visual System , 1981 .

[8]  Charles R. Dyer,et al.  Multiscale image understanding , 1987 .

[9]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Narendra Ahuja,et al.  Two-view Matching , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[11]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[12]  Laurent Vinet,et al.  Hierarchical region based stereo matching , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[14]  Eberhard Gülch Results of test on image matching of ISPRS WG III/4 , 1991 .

[15]  Narendra Ahuja,et al.  Matching Two Perspective Views , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[18]  Takeo Kanade,et al.  Development of a video-rate stereo machine , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[19]  Mark A. O'Neill,et al.  Automated system for coarse-to-fine pyramidal area correlation stereo matching , 1996, Image Vis. Comput..

[20]  Ales Leonardis,et al.  Robust stereo on multiple resolutions , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[21]  Richard Szeliski,et al.  Stereo matching with non-linear diffusion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Nicu Sebe,et al.  Which ranking metric is optimal? With applications in image retrieval and stereo matching , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[23]  Dr. Marsha Jo Hannah,et al.  Digital Stereo Image Matching Techniques , .