Mobile Robot Localization: Where We Are and What Are the Challenges?

This article surveys recent developments in the area of mobile robot localization. The focus is on indoor 3-D localization from vision and RGB-D data. We analyze three important aspects of the architecture of localization systems: perception, representation of the obtained data, and estimation of the robot trajectory from the internal representation of the outer environment. We attempt also to identify challenges and open problems in the domain. The analysis is illustrated by extensive references to the selected literature, as this paper was also conceived as a guide for those researchers, who want to enter the fascinating realm of SLAM for the first time.

[1]  Andrew J. Davison,et al.  A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Michal Fularz,et al.  Adopting Feature-Based Visual Odometry for Resource-Constrained Mobile Devices , 2014, ICIAR.

[3]  Seyedshams Feyzabadi,et al.  SLAM à la carte - GPGPU for Globally Consistent Scan Matching , 2011, ECMR.

[4]  Michal R. Nowicki,et al.  On the Performance of Pose-Based RGB-D Visual Navigation Systems , 2014, ACCV.

[5]  Jan Wietrzykowski,et al.  On the Representation of Planes for Efficient Graph-based SLAM with High-level Features , 2016, Journal of Automation, Mobile Robotics and Intelligent Systems.

[6]  Jan Faigl,et al.  On localization and mapping with RGB-D sensor and hexapod walking robot in rough terrains , 2016, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[7]  F. Fraundorfer,et al.  Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications , 2012, IEEE Robotics & Automation Magazine.

[8]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Michal R. Nowicki,et al.  Improving accuracy of feature-based RGB-D SLAM by modeling spatial uncertainty of point features , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[11]  Michał Nowicki,et al.  Experimental Verification of a Walking Robot Self-Localization System with the Kinect Sensor , 2013 .

[12]  Moonhong Baeg,et al.  Spatial Uncertainty Model for Visual Features Using a Kinect™ Sensor , 2012, Sensors.

[13]  Wolfram Burgard,et al.  Experimental analysis of dynamic covariance scaling for robust map optimization under bad initial estimates , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Wolfram Burgard,et al.  3-D Mapping With an RGB-D Camera , 2014, IEEE Transactions on Robotics.

[15]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[16]  Dominik Belter,et al.  REAL-TIME SLAM FROM RGB-D DATA ON A LEGGED ROBOT: AN EXPERIMENTAL STUDY , 2016 .

[17]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[19]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[20]  Peter I. Corke,et al.  Visual Place Recognition: A Survey , 2016, IEEE Transactions on Robotics.

[21]  Achim J. Lilienthal,et al.  Comparative Evaluation of Range Sensor Accuracy in Indoor Environments , 2011, ECMR.

[22]  Wolfram Burgard,et al.  Point feature extraction on 3D range scans taking into account object boundaries , 2011, 2011 IEEE International Conference on Robotics and Automation.

[23]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[24]  Piotr Skrzypczynski,et al.  Simultaneous localization and mapping: A feature-based probabilistic approach , 2009, Int. J. Appl. Math. Comput. Sci..

[25]  Adam Schmidt,et al.  The Visual SLAM System for a Hexapod Robot , 2010, ICCVG.

[26]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[27]  Albert S. Huang,et al.  Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments , 2012, Int. J. Robotics Res..

[28]  Michael Kaess,et al.  Simultaneous localization and mapping with infinite planes , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[29]  Juan D. Tardós,et al.  Large-Scale SLAM Building Conditionally Independent Local Maps: Application to Monocular Vision , 2008, IEEE Transactions on Robotics.

[30]  Hauke Strasdat,et al.  Visual SLAM: Why filter? , 2012, Image Vis. Comput..

[31]  Esra Ataer Cansizoglu,et al.  Object detection and tracking in RGB-D SLAM via hierarchical feature grouping , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[32]  Cyrill Stachniss,et al.  Exploiting building information from publicly available maps in graph-based SLAM , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[33]  Pedro Pini,et al.  Large-Scale SLAM Building Conditionally Independent Local Maps: Application to Monocular Vision , 2008 .

[34]  Piotr Skrzypczynski,et al.  Precise self-localization of a walking robot on rough terrain using parallel tracking and mapping , 2013, Ind. Robot.

[35]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building: A Multisensor Fusion Approach , 2000 .

[36]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[37]  Lina María Paz,et al.  Large-Scale 6-DOF SLAM With Stereo-in-Hand , 2008, IEEE Transactions on Robotics.

[38]  Michal R. Nowicki,et al.  Combining photometric and depth data for lightweight and robust visual odometry , 2013, 2013 European Conference on Mobile Robots.

[39]  Andreas Zell,et al.  Efficient onbard RGBD-SLAM for autonomous MAVs , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Adam Schmidt,et al.  Efficient RGB–D data processing for feature–based self–localization of mobile robots , 2016, Int. J. Appl. Math. Comput. Sci..

[41]  Juan D. Tardós,et al.  Visual-Inertial Monocular SLAM With Map Reuse , 2016, IEEE Robotics and Automation Letters.

[42]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[43]  Adam Schmidt,et al.  Toward evaluation of visual navigation algorithms on RGB-D data from the first- and second-generation Kinect , 2016, Machine Vision and Applications.

[44]  Michael Milford,et al.  Meaningful maps with object-oriented semantic mapping , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[45]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[46]  Krzysztof Walas,et al.  Lightweight RGB-D SLAM System for Search and Rescue Robots , 2015, Progress in Automation, Robotics and Measuring Techniques.

[47]  Wolfram Burgard,et al.  A Tutorial on Graph-Based SLAM , 2010, IEEE Intelligent Transportation Systems Magazine.

[48]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[49]  Jan Faigl,et al.  Stereo vision-based localization for hexapod walking robots operating in rough terrains , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[50]  John J. Leonard,et al.  Real-time large-scale dense RGB-D SLAM with volumetric fusion , 2014, Int. J. Robotics Res..

[51]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[52]  Marek Kraft,et al.  Comparative assessment of point feature detectors in the context of robot navigation , 2013 .

[53]  Jizhong Xiao,et al.  Fast visual odometry and mapping from RGB-D data , 2013, 2013 IEEE International Conference on Robotics and Automation.

[54]  Michal R. Nowicki,et al.  Accurate Map-Based RGB-D SLAM for Mobile Robots , 2015, ROBOT.

[55]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building , 1999 .

[56]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[57]  Chen Feng,et al.  Point-plane SLAM for hand-held 3D sensors , 2013, 2013 IEEE International Conference on Robotics and Automation.

[58]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[59]  Javier Civera,et al.  Stereo parallel tracking and mapping for robot localization , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[60]  Wolfram Burgard,et al.  OctoMap: an efficient probabilistic 3D mapping framework based on octrees , 2013, Autonomous Robots.

[61]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[62]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[63]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[64]  Piotr Skrzypczynski Laser scan matching for self-localization of a walking robot in man-made environments , 2012, Ind. Robot.

[65]  Ethan Rublee,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[66]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[67]  Nico Blodow,et al.  Aligning point cloud views using persistent feature histograms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[68]  Joachim Hertzberg,et al.  6D SLAM—3D mapping outdoor environments , 2007, J. Field Robotics.

[69]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  F. Dellaert Factor Graphs and GTSAM: A Hands-on Introduction , 2012 .

[71]  Roland Siegwart,et al.  3D SLAM using planar segments , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[72]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[73]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[74]  Daniel Cremers,et al.  Robust odometry estimation for RGB-D cameras , 2013, 2013 IEEE International Conference on Robotics and Automation.