Optimal Monotonicity-Preserving Perturbations of a Given Runge–Kutta Method

Perturbed Runge–Kutta methods (also referred to as downwind Runge–Kutta methods) can guarantee monotonicity preservation under larger step sizes relative to their traditional Runge–Kutta counterparts. In this paper we study the question of how to optimally perturb a given method in order to increase the radius of absolute monotonicity (a.m.). We prove that for methods with zero radius of a.m., it is always possible to give a perturbation with positive radius. We first study methods for linear problems and then methods for nonlinear problems. In each case, we prove upper bounds on the radius of a.m., and provide algorithms to compute optimal perturbations. We also provide optimal perturbations for many known methods.

[1]  Randall J. LeVeque,et al.  A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .

[2]  John N. Shadid,et al.  Implicit and Implicit–Explicit Strong Stability Preserving Runge–Kutta Methods with High Linear Order , 2017, J. Sci. Comput..

[3]  Inmaculada Higueras,et al.  Representations of Runge-Kutta Methods and Strong Stability Preserving Methods , 2005, SIAM J. Numer. Anal..

[4]  Z. Horváth,et al.  On the positivity step size threshold of Runge-Kutta methods , 2005 .

[5]  David I. Ketcheson,et al.  High Order Strong Stability Preserving Time Integrators and Numerical Wave Propagation Methods for H , 2009 .

[6]  Inmaculada Higueras,et al.  On stability issues for IMEX schemes applied to 1D scalar hyperbolic equations with stiff reaction terms , 2011, Math. Comput..

[7]  David I. Ketcheson,et al.  Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..

[8]  David I. Ketcheson,et al.  Computation of optimal monotonicity preserving general linear methods , 2009, Math. Comput..

[9]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[10]  M. N. Spijker,et al.  Stepsize Restrictions for the Total-Variation-Diminishing Property in General Runge-Kutta Methods , 2004, SIAM J. Numer. Anal..

[11]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[12]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[13]  Steven J. Ruuth,et al.  High-Order Strong-Stability-Preserving Runge-Kutta Methods with Downwind-Biased Spatial Discretizations , 2004, SIAM J. Numer. Anal..

[14]  Inmaculada Higueras Sanz Positivity properties for the classical fourth order Runge-Kutta method , 2010 .

[15]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[16]  Erwin Fehlberg,et al.  Klassische Runge-Kutta-Formeln fünfter und siebenter Ordnung mit Schrittweiten-Kontrolle , 1969, Computing.

[17]  Inmaculada Higueras,et al.  Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..

[18]  Steven J. Ruuth Global optimization of explicit strong-stability-preserving Runge-Kutta methods , 2005, Math. Comput..

[19]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[20]  Manuel Calvo,et al.  A new embedded pair of Runge-Kutta formulas of orders 5 and 6 , 1990 .

[21]  Lawrence F. Shampine,et al.  An efficient Runge-Kutta (4,5) pair , 1996 .

[22]  J. Verwer,et al.  A positive finite-difference advection scheme , 1995 .

[23]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[24]  David I. Ketcheson,et al.  Step Sizes for Strong Stability Preservation with Downwind-Biased Operators , 2011, SIAM J. Numer. Anal..

[25]  J. Kraaijevanger Contractivity of Runge-Kutta methods , 1991 .

[26]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[27]  Steven J. Ruuth,et al.  Optimal Strong-Stability-Preserving Time-Stepping Schemes with Fast Downwind Spatial Discretizations , 2006, J. Sci. Comput..