Optimal Monotonicity-Preserving Perturbations of a Given Runge–Kutta Method
暂无分享,去创建一个
[1] Randall J. LeVeque,et al. A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .
[2] John N. Shadid,et al. Implicit and Implicit–Explicit Strong Stability Preserving Runge–Kutta Methods with High Linear Order , 2017, J. Sci. Comput..
[3] Inmaculada Higueras,et al. Representations of Runge-Kutta Methods and Strong Stability Preserving Methods , 2005, SIAM J. Numer. Anal..
[4] Z. Horváth,et al. On the positivity step size threshold of Runge-Kutta methods , 2005 .
[5] David I. Ketcheson,et al. High Order Strong Stability Preserving Time Integrators and Numerical Wave Propagation Methods for H , 2009 .
[6] Inmaculada Higueras,et al. On stability issues for IMEX schemes applied to 1D scalar hyperbolic equations with stiff reaction terms , 2011, Math. Comput..
[7] David I. Ketcheson,et al. Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..
[8] David I. Ketcheson,et al. Computation of optimal monotonicity preserving general linear methods , 2009, Math. Comput..
[9] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[10] M. N. Spijker,et al. Stepsize Restrictions for the Total-Variation-Diminishing Property in General Runge-Kutta Methods , 2004, SIAM J. Numer. Anal..
[11] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[12] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[13] Steven J. Ruuth,et al. High-Order Strong-Stability-Preserving Runge-Kutta Methods with Downwind-Biased Spatial Discretizations , 2004, SIAM J. Numer. Anal..
[14] Inmaculada Higueras Sanz. Positivity properties for the classical fourth order Runge-Kutta method , 2010 .
[15] Xiangxiong Zhang,et al. On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..
[16] Erwin Fehlberg,et al. Klassische Runge-Kutta-Formeln fünfter und siebenter Ordnung mit Schrittweiten-Kontrolle , 1969, Computing.
[17] Inmaculada Higueras,et al. Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..
[18] Steven J. Ruuth. Global optimization of explicit strong-stability-preserving Runge-Kutta methods , 2005, Math. Comput..
[19] J. Dormand,et al. High order embedded Runge-Kutta formulae , 1981 .
[20] Manuel Calvo,et al. A new embedded pair of Runge-Kutta formulas of orders 5 and 6 , 1990 .
[21] Lawrence F. Shampine,et al. An efficient Runge-Kutta (4,5) pair , 1996 .
[22] J. Verwer,et al. A positive finite-difference advection scheme , 1995 .
[23] David I. Ketcheson,et al. Strong stability preserving runge-kutta and multistep time discretizations , 2011 .
[24] David I. Ketcheson,et al. Step Sizes for Strong Stability Preservation with Downwind-Biased Operators , 2011, SIAM J. Numer. Anal..
[25] J. Kraaijevanger. Contractivity of Runge-Kutta methods , 1991 .
[26] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[27] Steven J. Ruuth,et al. Optimal Strong-Stability-Preserving Time-Stepping Schemes with Fast Downwind Spatial Discretizations , 2006, J. Sci. Comput..