Large-scale linear programming: Geometry, working bases and factorizations

This paper is concerned with linear programming problems in which many of the constraints are handled implicitly by requiring that the vector of decision variables lie in a polyhedronX. It is shown that the simplex method can be implemented using a working basis whose size is the number of explicit constraints as long as the local structure ofX around the current point is known. Various ways of describing this local structure lead to known implementations whenX is defined by generalized or variable upper bounds or flow conservation constraints. In the general case a decomposition principle can be used to generate this local structure. We also show how to update factorizations of the working basis.

[1]  H. Markowitz The Elimination form of the Inverse and its Application to Linear Programming , 1957 .

[2]  G. Dantzig,et al.  THE DECOMPOSITION ALGORITHM FOR LINEAR PROGRAMS , 1961 .

[3]  G. Dantzig COMPACT BASIS TRIANGULARIZATION FOR THE SIMPLEX METHOD , 1962 .

[4]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[5]  Ellis L. Johnson,et al.  Networks and Basic Solutions , 1966, Oper. Res..

[6]  George B. Dantzig,et al.  Generalized Upper Bounding Techniques , 1967, J. Comput. Syst. Sci..

[7]  Abraham Charnes,et al.  An Explicit Solution of a Special Class of Linear Programming Problems , 1968, Oper. Res..

[8]  G. Golub,et al.  Numerical techniques in mathematical programming , 1970 .

[9]  Leon S. Lasdon,et al.  Optimization Theory of Large Systems , 1970 .

[10]  Leon S. Lasdon,et al.  A generalized upper bounding algorithm for multicommodity network flow problems , 1971, Networks.

[11]  R. Bartels A stabilization of the simplex method , 1971 .

[12]  John A. Tomlin,et al.  Updated triangular factors of the basis to maintain sparsity in the product form simplex method , 1972, Math. Program..

[13]  Michael D. Grigoriadis,et al.  A partitioning algorithm for the multicommodity network flow problem , 1972, Math. Program..

[14]  P. Gill,et al.  A numerically stable form of the simplex algorithm , 1973 .

[15]  Gerald L. Thompson,et al.  Benefit-Cost Analysis of Coding Techniques for the Primal Transportation Algorithm , 1973, JACM.

[16]  John A. Tomlin Technical Note - Generalized Upper Bounds and Triangular Decomposition in the Simplex Method , 1974, Oper. Res..

[17]  Fred W. Glover,et al.  Implementation and computational comparisons of primal, dual and primal-dual computer codes for minimum cost network flow problems , 1974, Networks.

[18]  P. Gill,et al.  Methods for computing and modifying the $LDV$ factors of a matrix , 1975 .

[19]  Darwin Klingman,et al.  Solving Constrained Transportation Problems , 1972, Oper. Res..

[20]  L. Schrage Implicit representation of variable upper bounds in linear programming , 1975 .

[21]  Michael A. Saunders,et al.  A FAST, STABLE IMPLEMENTATION OF THE SIMPLEX METHOD USING BARTELS-GOLUB UPDATING , 1976 .

[22]  Gerald G. Brown,et al.  Design and Implementation of Large-Scale Primal Transshipment Algorithms , 1976 .

[23]  Richard D. McBride,et al.  The factorization approach to large-scale linear programming , 1976, Math. Program..

[24]  S. Chen,et al.  A primal algorithm for solving a capacitated network flow problem with additional linear constraints , 1977, Networks.

[25]  Evan L. Porteus,et al.  Triangular Factorization and Generalized Upper Bounding Techniques , 1977, Oper. Res..

[26]  Arjang A. Assad,et al.  Multicommodity network flows - A survey , 1978, Networks.

[27]  R. C. Daniel A note on Schrage's generalised variable upper bounds , 1978, Math. Program..

[28]  Reeta Gupta Solving the Generalized Transportation Problem with Constraints , 1978 .

[29]  Jeff L. Kennington,et al.  A Survey of Linear Cost Multicommodity Network Flows , 1978, Oper. Res..

[30]  Linus Schrage,et al.  Implicit representation of generalized variable upper bounds in linear programming , 1978, Math. Program..

[31]  Jeffery L. Kennington,et al.  Primal simplex network codes: State-of-the-art implementation technology , 1978, Networks.

[32]  Michael A. Saunders,et al.  Large-scale linearly constrained optimization , 1978, Math. Program..

[33]  Richard D. McBride A bump triangular dynamic factorization algorithm for the simplex method , 1980, Math. Program..

[34]  Michael J. Todd,et al.  An implementation of the simplex method for linear programming problems with variable upper bounds , 1982, Math. Program..

[35]  John K. Reid,et al.  A sparsity-exploiting variant of the Bartels—Golub decomposition for linear programming bases , 1982, Math. Program..