Measurement of Low Amounts of Precipitable Water Vapor Using Ground-Based Millimeterwave Radiometry

Abstract Extremely dry conditions characterized by amounts of precipitable water vapor (PWV) as low as 1–2 mm commonly occur in high-latitude regions during the winter months. While such dry atmospheres carry only a few percent of the latent heat energy compared to tropical atmospheres, the effects of low vapor amounts on the polar radiation budget—both directly through modulation of longwave radiation and indirectly through the formation of clouds—are considerable. Accurate measurements of PWV during such dry conditions are needed to improve polar radiation models for use in understanding and predicting change in the climatically sensitive polar regions. To this end, the strong water-vapor absorption line at 183.310 GHz provides a unique means of measuring low amounts of PWV. Weighting function analysis, forward model calculations based upon a 7-yr radiosonde dataset, and retrieval simulations consistently predict that radiometric measurements made using several millimeter-wavelength (MMW) channels near ...

[1]  J. B. Snider,et al.  Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90.0 GHz: a comparison of measurements and theory , 1990 .

[2]  E. Westwater,et al.  REMOTE SENSING OF BOUNDARY LAYER TEMPERATURE PROFILES BY A SCANNING 5-MM MICROWAVE RADIOMETER AND RASS : COMPARISON EXPERIMENTS , 1999 .

[3]  M. Iacono,et al.  Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor , 1992 .

[4]  S. Clough,et al.  Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience , 2003 .

[5]  F. Agterberg Introduction to Mathematics of Inversion in Remote Sensing and Indirect Measurements , 1979 .

[6]  Yong Han,et al.  Analysis and improvement of tipping calibration for ground-based microwave radiometers , 2000, IEEE Trans. Geosci. Remote. Sens..

[7]  David Carlson,et al.  Corrections of Humidity Measurement Errors from the Vaisala RS80 Radiosonde—Application to TOGA COARE Data , 2002 .

[8]  Paul Racette,et al.  A multi-channel microwave radiometer uses reference averaging for calibration: precision approaches that of a total power radiometer , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[9]  Ed R. Westwater,et al.  The accuracy of water vapor and cloud liquid determination by dual‐frequency ground‐based microwave radiometry , 1978 .

[10]  Bjorn Lambrigtsen,et al.  A statistical correlation method for the retrieval of atmospheric moisture profiles by microwave radiometry , 1984 .

[11]  W. H. Henry Corrections for humidity , 1978 .

[12]  Shepard A. Clough,et al.  The ARM program's water vapor intensive observation periods - Overview, initial accomplishments, and future challenges , 2003 .

[13]  Hans J. Liebe,et al.  Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies Below 1000 GHz , 1993 .

[14]  Andreas Siegenthaler,et al.  First water vapor measurements at 183 GHz from the high alpine station Jungfraujoch , 2001, IEEE Trans. Geosci. Remote. Sens..

[15]  Judith A. Curry,et al.  Overview of Arctic Cloud and Radiation Characteristics , 1996 .

[16]  P. Rosenkranz Water vapor microwave continuum absorption: A comparison of measurements and models , 1998 .

[17]  M. Shupe,et al.  Analysis of Integrated Cloud Liquid and Precipitable Water Vapor Retrievals from the ARM Microwave Radiometer During SHEBA , 2001 .

[18]  Judith A. Curry,et al.  Review of Science Issues, Deployment Strategy, and Status for the ARM North Slope of Alaska–Adjacent Arctic Ocean Climate Research Site , 1999 .

[19]  Yong Han,et al.  Accuracy of ground-based microwave radiometer and balloon-borne measurements during the WVIOP2000 field experiment , 2003, IEEE Trans. Geosci. Remote. Sens..

[20]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[21]  L. R. Dod,et al.  Retrieval of total precipitable water over high latitude regions using radiometric measurements near 90 and 183 GHz , 1992 .

[22]  Stephen J. English,et al.  Estimation of Temperature and Humidity Profile Information from Microwave Radiances over Different Surface Types , 1999 .

[23]  Philip W. Rosenkranz,et al.  Atmospheric 60-GHz oxygen spectrum : new laboratory measurements and line parameters , 1992 .

[24]  N. A. Zaitseva,et al.  The distribution and transport of atmospheric water vapour over the Arctic Basin , 1995 .

[25]  Arthur L. Boyer,et al.  The physics of intensity-modulated radiation therapy , 2002 .

[26]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[27]  James D. Spinhirne,et al.  The Effect of Clouds on Water Vapor Profiling from the Millimeter-Wave Radiometric Measurements , 1997 .

[28]  Albin J. Gasiewski,et al.  Millimeter-wave radiometric observations of the troposphere: a comparison of measurements and calculations based on radiosonde and Raman lidar , 1995, IEEE Trans. Geosci. Remote. Sens..

[29]  Catherine Prigent,et al.  Physical retrieval of liquid water contents in a North Atlantic cyclone using SSM/I data , 1994 .

[30]  Michael Janssen,et al.  A New Instrument for the Determination of Radio Path Delay due to Atmospheric Water Vapor , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Paul Racette,et al.  A calibration experiment using the millimeter-wave imaging radiometer at the UK Meteorological Office calibration facility , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[32]  Thomas T. Wilheit,et al.  Profiling atmospheric water vapor by microwave radiometry , 1977 .

[33]  M. Janssen Atmospheric Remote Sensing by Microwave Radiometry , 1993 .

[34]  R. Kakar,et al.  Simultaneous measurements of atmospheric water vapor with MIR, Raman lidar and rawinsondes , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[35]  Hans J. Liebe,et al.  Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling , 1987 .

[36]  Paul Racette,et al.  Retrievals of column water vapor using millimeter-wave radiometric measurements , 2002, IEEE Trans. Geosci. Remote. Sens..

[37]  Shepard A. Clough,et al.  Effect on the Calculated Spectral Surface Radiances Due to MWR Scaling of Sonde Water Vapor Profiles , 1999 .

[38]  Ed R. Westwater,et al.  A Steerable Dual-Channel Microwave Radiometer for Measurement of Water Vapor and Liquid in the Troposphere , 1983 .

[39]  H. B. Howell,et al.  Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder. , 1988, Applied optics.

[40]  Paul Racette,et al.  An Airborne Millimeter-Wave Imaging Radiometer for Cloud, Precipitation, and Atmospheric Water Vapor Studies , 1996 .

[41]  J. Wang,et al.  Retrieval of precipitable water using Special Sensor Microwave/Temperature‐2 (SSM/T‐2) millimeter‐wave radiometric measurements , 2003 .

[42]  Sergey Y. Matrosov,et al.  Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean project , 2001 .

[43]  Paul Racette,et al.  Retrieval of precipitable water vapor by the millimeter-wave imaging radiometer in the arctic region during FIRE-ACE , 2001, IEEE Trans. Geosci. Remote. Sens..

[44]  John D. Pickle,et al.  DMSP F11 SSM/T-2 Calibration and Validation , 1992 .

[45]  D. C. Jones,et al.  Ground-based retrieval of very low to high columnar integrated water vapor using combined millimeter-wave and microwave observations , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[46]  E. N. Kadygrov,et al.  Remote sensing of boundary-layer temperature profiles by a scanning 5-mm microwave radiometer and RASS: a comparison experiment , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[47]  B. Lesht,et al.  Reanalysis of Radiosonde Data from the 1996 and 1997 Water Vapor Intensive Observation Periods: Application of the Vaisala RS-80H Contamination Correction Algorithm to Dual-Sonde Soundings , 1999 .

[48]  Raymond K. Garcia,et al.  Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 26μm , 1999 .

[49]  Gerald M. Stokes,et al.  The Atmospheric Radiation Measurement Program , 2003 .

[50]  Ramesh K. Kakar,et al.  Retrieval of Clear Sky Moisture Profiles using the 183 GHz Water Vapor Line , 1983 .

[51]  J. Michalsky,et al.  A robust retrieval of water vapor column in dry Arctic conditions using the rotating shadowband spectroradiometer , 2001 .

[52]  S. Schwartz,et al.  The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed , 1994 .

[53]  J. Spinhirne,et al.  Observations of cirrus clouds with airborne MIR, CLS, and MAS during SUCCESS , 1998 .

[54]  Paul Racette,et al.  Millimeter-Wave Imaging Radiometer for Cloud, Precipitation. and Atmospheric Water Vapor Studies , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[55]  Paul Racette,et al.  MIR measurements of atmospheric water vapor profiles , 1997, IEEE Trans. Geosci. Remote. Sens..

[56]  Domenico Cimini,et al.  Radiosonde Humidity Soundings and Microwave Radiometers during Nauru99 , 2003 .

[57]  R. Barry,et al.  Atmospheric Water Vapor Characteristics at 70°N. , 1995 .

[58]  Charles G. Wade,et al.  An Evaluation of Problems Affecting the Measurement of Low Relative Humidity on the United States Radiosonde , 1994 .

[59]  Hans J. Liebe,et al.  MPM—An atmospheric millimeter-wave propagation model , 1989 .