Complete Quantum-State Tomography with a Local Random Field.

Single-qubit measurements are typically insufficient for inferring arbitrary quantum states of a multiqubit system. We show that, if the system can be fully controlled by driving a single qubit, then utilizing a local random pulse is almost always sufficient for complete quantum-state tomography. Experimental demonstrations of this principle are presented using a nitrogen-vacancy (NV) center in diamond coupled to a nuclear spin, which is not directly accessible. We report the reconstruction of a highly entangled state between the electron and nuclear spin with fidelity above 95% by randomly driving and measuring the NV-center electron spin only. Beyond quantum-state tomography, we outline how this principle can be leveraged to characterize and control quantum processes in cases where the system model is not known.

[1]  Zach DeVito,et al.  Opt , 2017 .

[2]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[3]  S. Schirmer,et al.  Subspace controllability of spin-1/2 chains with symmetries , 2016 .

[4]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[5]  Nan Zhao,et al.  Sensing single remote nuclear spins. , 2012, Nature nanotechnology.

[6]  Erik Nielsen,et al.  Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit , 2013, 1310.4492.

[7]  Experimental realization of self-guided quantum process tomography , 2020, 1908.01082.

[8]  M. Girvin,et al.  Quantum Simulation of Gauge Theories and Inflation , 2019, Journal Club for Condensed Matter Physics.

[9]  H. Wiseman,et al.  Dynamics of initially correlated open quantum systems: Theory and applications , 2018, Physical Review A.

[10]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[11]  H. Sosa-Martinez,et al.  Quantum state tomography by continuous measurement and compressed sensing , 2013 .

[12]  Optical polarization of nuclear ensembles in diamond , 2012, 1202.1072.

[13]  Yu Liu,et al.  Pulsed Quantum-State Reconstruction of Dark Systems. , 2019, Physical review letters.

[14]  Matthias Christandl,et al.  Reliable quantum state tomography. , 2011, Physical review letters.

[15]  H. Rabitz,et al.  Combining the synergistic control capabilities of modeling and experiments: Illustration of finding a minimum-time quantum objective , 2018, Physical Review A.

[16]  M. Lewenstein,et al.  Detection of entanglement with few local measurements , 2002, quant-ph/0205089.

[17]  Vittorio Giovannetti,et al.  Local controllability of quantum networks , 2009 .

[18]  T. Taminiau,et al.  Detection and control of individual nuclear spins using a weakly coupled electron spin. , 2012, Physical review letters.

[19]  J. Eisert,et al.  Efficient and feasible state tomography of quantum many-body systems , 2012, 1204.5735.

[20]  Claudio Altafini,et al.  Controllability of quantum mechanical systems by root space decomposition of su(N) , 2002 .

[21]  Robert L. Kosut,et al.  Informationally complete measurements from compressed sensing methodology , 2015, ArXiv.

[22]  Seth Lloyd,et al.  Universal quantum interfaces , 2004 .

[23]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[24]  Ivan H Deutsch,et al.  Quantum state reconstruction via continuous measurement. , 2005, Physical review letters.

[25]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[26]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[27]  Franco Nori,et al.  Scalable quantum computation via local control of only two qubits , 2009, 0905.3373.

[28]  D. Burgarth,et al.  Driven quantum dynamics: will it blend? , 2017, 1704.03041.

[29]  J. Maze,et al.  High-resolution spectroscopy of single NV defects coupled with nearby 13 C nuclear spins in diamond , 2012, 1204.2947.

[30]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.

[31]  Paul Busch,et al.  Informationally complete sets of physical quantities , 1991 .

[32]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[33]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[34]  R. Kosut,et al.  Efficient measurement of quantum dynamics via compressive sensing. , 2009, Physical review letters.

[35]  Jun Li,et al.  Hybrid Quantum-Classical Approach to Quantum Optimal Control. , 2016, Physical review letters.

[36]  Poul S. Jessen,et al.  Quantum control and measurement of atomic spins in polarization spectroscopy , 2010 .

[37]  D. Gross,et al.  Experimental quantum compressed sensing for a seven-qubit system , 2016, Nature Communications.

[38]  S. Flammia,et al.  Random unitary maps for quantum state reconstruction , 2009, 0912.2101.

[39]  Sonia G. Schirmer,et al.  Global controllability with a single local actuator , 2008 .

[40]  D. Burgarth,et al.  Control of open quantum systems: case study of the central spin model , 2013, 1312.0160.

[41]  Daniel Burgarth,et al.  Local quantum control of Heisenberg spin chains , 2010, 1007.2572.

[42]  D. J. Twitchen,et al.  A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute , 2019, Physical Review X.

[43]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[44]  Daniel Burgarth,et al.  Symmetry criteria for quantum simulability of effective interactions , 2015, 1504.07734.

[45]  R. Zeier,et al.  Symmetry principles in quantum systems theory , 2010, 1012.5256.

[46]  Peter Zoller,et al.  Statistical correlations between locally randomized measurements: A toolbox for probing entanglement in many-body quantum states , 2018, Physical Review A.

[47]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[48]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[49]  D. Burgarth,et al.  Quantum system identification. , 2011, Physical review letters.

[50]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[51]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[52]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[53]  S. Bennett,et al.  Sensing distant nuclear spins with a single electron spin. , 2012, Physical review letters.

[54]  A. I. Solomon,et al.  Complete controllability of quantum systems , 2000, quant-ph/0010031.

[55]  Shengshi Pang,et al.  Quantum state tomography with time-continuous measurements: reconstruction with resource limitations , 2018, Quantum Studies: Mathematics and Foundations.

[56]  M. S. Tame,et al.  Experimentally exploring compressed sensing quantum tomography , 2016, 1611.01189.

[57]  D. Fisher,et al.  Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond , 2009 .

[58]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[59]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[60]  Martin B. Plenio,et al.  A large-scale quantum simulator on a diamond surface at room temperature , 2012, Nature Physics.