ON G-DISCREPANCY AND MIXED MONTE CARLO AND QUASI-MONTE CARLO SEQUENCES
暂无分享,去创建一个
[1] E. Novak,et al. The inverse of the star-discrepancy depends linearly on the dimension , 2001 .
[2] Giray Ökten,et al. Error reduction techniques in quasi-monte carlo integration , 1999 .
[3] Michael Gnewuch. Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy , 2008, J. Complex..
[4] D. Pollard. Convergence of stochastic processes , 1984 .
[5] Aicke Hinrichs,et al. Covering numbers, Vapnik-ervonenkis classes and bounds for the star-discrepancy , 2004, J. Complex..
[6] Harald Niederreiter,et al. On the discrepancy of some hybrid sequences , 2009 .
[7] Michael Gnewuch. On probabilistic results for the discrepancy of a hybrid-Monte Carlo sequence , 2009, J. Complex..
[8] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[9] A. Rosca. A mixed Monte Carlo and quasi-Monte Carlo sequence for multidimensional integral estimation. , 2007 .
[10] P. Gänssler. Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .
[11] Zhi-Wei Sun. On covering numbers , 2006 .
[12] Bruno Tuffin,et al. A central limit theorem and improved error bounds for a hybrid-Monte Carlo sequence with applications in computational finance , 2006, J. Complex..
[13] Jerome Spanier,et al. Quasi-Monte Carlo Methods for Particle Transport Problems , 1995 .
[14] Giray Ökten,et al. A Probabilistic Result on the Discrepancy of a Hybrid-Monte Carlo Sequence and Applications , 1996, Monte Carlo Methods Appl..