Decomposition-based evolutionary algorithm for large scale constrained problems

Cooperative Coevolutionary algorithms (CC) have been successful in solving large scale optimization problems. The performance of CC can be improved by decreasing the number of interdependent variables among decomposed subproblems. This is achieved by first identifying dependent variables, and by then grouping them in common subproblems. This approach has potential because so far no grouping technique has been mainly developed for constrained problems. In this paper, a new variable interaction identification technique to identify the dependent variables in large scale constrained problems is proposed. The proposed technique is tested on both a new test suite of constrained problems with medium and high dimensions, which include overlapping subproblems and different levels of complexity and nonseparability and also the established DED problem. The experimental results have shown that the proposed technique contributes to the decomposition approach over a range of high dimensions, in comparison with other state-of-the art grouping techniques. It achieves better performance with higher feasibility ratios and less computational time.

[1]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[2]  Carlos A. Coello Coello Constraint-handling techniques used with evolutionary algorithms , 2007, GECCO '07.

[3]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[4]  Dirk Thierens,et al.  On the complexity of hierarchical problem solving , 2005, GECCO '05.

[5]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[6]  Ying Wang,et al.  Chaotic differential evolution methods for dynamic economic dispatch with valve-point effects , 2011, Eng. Appl. Artif. Intell..

[7]  Masatoshi Sakawa,et al.  Genetic algorithms with decomposition procedures for multidimensional 0-1 knapsack problems with block angular structures , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[8]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[9]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[10]  Tapabrata Ray,et al.  A cooperative coevolutionary algorithm with Correlation based Adaptive Variable Partitioning , 2009, 2009 IEEE Congress on Evolutionary Computation.

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Janez Brest,et al.  Large Scale Global Optimization using Differential Evolution with self-adaptation and cooperative co-evolution , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[13]  Hongfei Teng,et al.  Cooperative Co-evolutionary Differential Evolution for Function Optimization , 2005, ICNC.

[14]  Prabhat Hajela,et al.  Decomposition-based design optimization method using genetic co-evolution , 2004 .

[15]  Carlos A. Coello Coello,et al.  Modified Differential Evolution for Constrained Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[16]  A. E. Eiben,et al.  Adaptive Penalties for Evolutionary Graph Coloring , 1997, Artificial Evolution.

[17]  Bernhard Sendhoff,et al.  Advanced High Turning Compressor Airfoils for Low Reynolds Number Condition: Part 1 — Design and Optimization , 2003 .

[18]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[19]  David A. Bader High-Performance Algorithm Engineering for Large-Scale Graph Problems and Computational Biology , 2005, WEA.

[20]  Ruhul A. Sarker,et al.  Using Hybrid Dependency Identification with a Memetic Algorithm for Large Scale Optimization Problems , 2012, SEAL.

[21]  Alice E. Smith,et al.  Penalty guided genetic search for reliability design optimization , 1996 .

[22]  P. N. Suganthan,et al.  Ensemble of Constraint Handling Techniques , 2010, IEEE Transactions on Evolutionary Computation.

[23]  Yaochu Jin,et al.  Optimization of micro heat exchanger: CFD, analytical approach and multi-objective evolutionary algorithms , 2006 .

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  T. Jayabarathi,et al.  Evolutionary programming techniques for different kinds of economic dispatch problems , 2005 .

[26]  Masaharu Munetomo,et al.  Linkage Identification by Nonlinearity Check for Real-Coded Genetic Algorithms , 2004, GECCO.

[27]  Domenico Quagliarella,et al.  Airfoil and wing design through hybrid optimization strategies , 1998 .

[28]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[29]  M. Giphart-Gassler,et al.  Thermo-inducible expression of cloned early genes of bacteriophage Mu. , 1979, Gene.

[30]  Xiaodong Li,et al.  Cooperative Co-evolution with delta grouping for large scale non-separable function optimization , 2010, IEEE Congress on Evolutionary Computation.

[31]  Xin Yao,et al.  Differential evolution for high-dimensional function optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[32]  Bin Li,et al.  Two-stage based ensemble optimization for large-scale global optimization , 2010, IEEE Congress on Evolutionary Computation.

[33]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[34]  David E. Goldberg,et al.  Linkage Identification by Non-monotonicity Detection for Overlapping Functions , 1999, Evolutionary Computation.

[35]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[36]  Devavrat Shah,et al.  Fast Distributed Algorithms for Computing Separable Functions , 2005, IEEE Transactions on Information Theory.

[37]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[38]  Ruhul A. Sarker,et al.  Task Decomposition for Optimization Problem Solving , 2008, SEAL.

[39]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[40]  P. N. Suganthan,et al.  Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems , 2011 .

[41]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[42]  Bin Li,et al.  Variance priority based cooperative co-evolution differential evolution for large scale global optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[43]  Bin Li,et al.  Cooperative Coevolution with global search for large scale global optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[44]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[45]  Ángel Fernando Kuri Morales,et al.  A UNIVERSAL ECLECTIC GENETIC ALGORITHM FOR CONSTRAINED OPTIMIZATION , 2022 .

[46]  Zwe-Lee Gaing,et al.  Particle swarm optimization to solving the economic dispatch considering the generator constraints , 2003 .

[47]  Robert F. Dell,et al.  Optimally Stationing Army Forces , 2008, Interfaces.

[48]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[49]  Ponnuthurai Nagaratnam Suganthan,et al.  Benchmark Functions for the CEC'2013 Special Session and Competition on Large-Scale Global Optimization , 2008 .

[50]  Jing J. Liang,et al.  Problem Deflnitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization , 2006 .

[51]  Carlos A. Coello Coello,et al.  Multiobjective-based concepts to handle constraints in evolutionary algorithms , 2003, Proceedings of the Fourth Mexican International Conference on Computer Science, 2003. ENC 2003..

[52]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[53]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[54]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[55]  Yew-Soon Ong,et al.  A surrogate-assisted memetic co-evolutionary algorithm for expensive constrained optimization problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[56]  Frode Rømo,et al.  Optimizing the Norwegian Natural Gas Production and Transport , 2009, Interfaces.

[57]  Yanchun Liang,et al.  A cooperative particle swarm optimizer with statistical variable interdependence learning , 2012, Inf. Sci..

[58]  A. Ebenezer Jeyakumar,et al.  Deterministically guided PSO for dynamic dispatch considering valve-point effect , 2005 .

[59]  David E. Goldberg,et al.  Dependency Structure Matrix, Genetic Algorithms, and Effective Recombination , 2009, Evolutionary Computation.

[60]  C. B. Lucasius,et al.  Genetic algorithms for large-scale optimization in chemometrics: An application , 1991 .

[61]  David E. Goldberg,et al.  Genetic Algorithm Design Inspired by Organizational Theory: Pilot Study of a Dependency Structure Matrix Driven Genetic Algorithm , 2003, GECCO.

[62]  Ruhul A. Sarker,et al.  On an evolutionary approach for constrained optimization problem solving , 2012, Appl. Soft Comput..

[63]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[64]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[65]  Scott Kirkpatrick,et al.  Optimization by Simmulated Annealing , 1983, Sci..

[66]  Jennifer Treuting,et al.  Building blocks , 2007, SIGGRAPH '07.

[67]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .

[68]  G. McCormick,et al.  Extensions of SUMT for Nonlinear Programming: Equality Constraints and Extrapolation , 1966 .

[69]  Masaharu Munetomo,et al.  Modeling Dependencies of Loci with String Classification According to Fitness Differences , 2004, GECCO.

[70]  Xiaodong Li,et al.  Cooperative Co-evolution for large scale optimization through more frequent random grouping , 2010, IEEE Congress on Evolutionary Computation.

[71]  David E. Goldberg,et al.  Simplex crossover and linkage identification: single-stage evolution vs. multi-stage evolution , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[72]  R. Balamurugan,et al.  An Improved Differential Evolution Based Dynamic Economic Dispatch with Nonsmooth Fuel Cost Function , 2007 .

[73]  Masaharu Munetomo,et al.  Linkage Identification by Fitness Difference Clustering , 2006, Evolutionary Computation.

[74]  Bijaya K. Panigrahi,et al.  Dynamic economic load dispatch using hybrid swarm intelligence based harmony search algorithm , 2011, Expert Syst. Appl..

[75]  P. Attaviriyanupap,et al.  A Hybrid EP and SQP for Dynamic Economic Dispatch with Nonsmooth Fuel Cost Function , 2002, IEEE Power Engineering Review.

[76]  Carlos A. Coello Coello,et al.  Handling constraints using multiobjective optimization concepts , 2004 .

[77]  Chung-Yao Chuang,et al.  Likage identification by perturbation and decision tree induction , 2007, 2007 IEEE Congress on Evolutionary Computation.

[78]  Gregory W. Corder,et al.  Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach , 2009 .

[79]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[80]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms with application to control engineering problems. , 1995 .

[81]  Xin Yao,et al.  Multilevel cooperative coevolution for large scale optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[82]  Jeffrey Harr,et al.  Building Blocks , 2013 .

[83]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[84]  Yu Wang,et al.  Adaptive cooperative co-evolution for large scale global optimization , 2010, 2010 IEEE Youth Conference on Information, Computing and Telecommunications.

[85]  Xiaodong Li,et al.  Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization , 2014, IEEE Transactions on Evolutionary Computation.

[86]  Xin Yao,et al.  An adaptive coevolutionary Differential Evolution algorithm for large-scale optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[87]  Karsten Weicker,et al.  On the improvement of coevolutionary optimizers by learning variable interdependencies , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[88]  Zhenyu Yang,et al.  Large-Scale Global Optimization Using Cooperative Coevolution with Variable Interaction Learning , 2010, PPSN.

[89]  Carlos A. Coello Coello,et al.  Constrained Optimization via Multiobjective Evolutionary Algorithms , 2008, Multiobjective Problem Solving from Nature.

[90]  René Descartes,et al.  Discourse on the Method of Rightly Conducting the Reason, and Seeking Truth in the Sciences , 2003 .

[91]  Malabika Basu,et al.  Simulated Annealing Technique for Dynamic Economic Dispatch , 2006 .

[92]  John H. Holland,et al.  Building Blocks, Cohort Genetic Algorithms, and Hyperplane-Defined Functions , 2000, Evolutionary Computation.

[93]  G. Sheblé,et al.  Genetic algorithm solution of economic dispatch with valve point loading , 1993 .

[94]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[95]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[96]  Xiaodong Li,et al.  Benchmark Functions for the CEC'2010 Special Session and Competition on Large-Scale , 2009 .

[97]  P. Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real- Parameter Optimization , 2010 .

[98]  Jano I. van Hemert,et al.  Graph Coloring with Adaptive Evolutionary Algorithms , 1998, J. Heuristics.

[99]  Bin Li,et al.  Empirical study of the effect of variable correlation on grouping in Cooperative Coevolutionary Evolutionary Algorithms , 2012, 2012 IEEE Congress on Evolutionary Computation.

[100]  Xin Yao,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008, Inf. Sci..

[101]  Edite Manuela da G. P. Fernandes,et al.  A modified differential evolution based solution technique for economic dispatch problems , 2012 .

[102]  A. A. Ilemobade,et al.  Application of a constrained non-linear hydraulic gradient design tool to water reticulation network upgrade , 2006 .

[103]  Ruhul A. Sarker,et al.  Dependency Identification technique for large scale optimization problems , 2012, 2012 IEEE Congress on Evolutionary Computation.

[104]  Carlos A. Coello Coello,et al.  Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization , 2005, GECCO '05.

[105]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[106]  Charles W. Carroll The Created Response Surface Technique for Optimizing Nonlinear, Restrained Systems , 1961 .

[107]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[108]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[109]  Carlos A. Coello Coello,et al.  Simple Feasibility Rules and Differential Evolution for Constrained Optimization , 2004, MICAI.

[110]  René Descartes Discourse on the Method of Rightly Conducting the Reason, and Seeking Truth in the Sciences. Translated From the French, and Collated With the Latin by John Veitch , 2012 .