Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers

The transformer-feedback (TRFB) interstage bandwidth enhancement technique for broadband multistage amplifiers is presented. Theory of the TRFB bandwidth enhancement and the design conditions for maximum bandwidth, maximally flat gain, and maximally flat group delay are provided. It is shown that the TRFB bandwidth enhancement can provide higher bandwidth compared to the conventional techniques based on reactive impedance matching networks. A three-stage low-noise amplifier (LNA) monolithic microwave integrated circuit with the TRFB between its consecutive stages is designed and implemented in a 0.1- μm GaAs pHEMT process. The TRFB is realized by coupling between the drain bias lines of transistors. The reuse of bias lines leads to bandwidth enhancement without increasing the chip area and power consumption. The LNA features average gain of 23 dB and 3-dB bandwidth of 11-39 GHz. It provides a noise figure of 2.1-3.0 dB and an output 1-dB compression point of 8.6 dBm, while consuming 40 mA of current from a 2-V supply.

[1]  Frank Ellinger,et al.  A Comparative Analysis of Peaking Methods for Output Stages of Broadband Amplifiers , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Walter Ciccognani,et al.  MMIC LNAs for Radioastronomy Applications Using Advanced Industrial 70 nm Metamorphic Technology , 2009, IEEE Journal of Solid-State Circuits.

[3]  Ta-Shun Chu,et al.  An Integrated Ultra-Wideband Timed Array Receiver in 0.13 $\mu{\hbox{m}}$ CMOS Using a Path-Sharing True Time Delay Architecture , 2007, IEEE Journal of Solid-State Circuits.

[4]  Behzad Razavi,et al.  40-Gb/s amplifier and ESD protection circuit in 0.18-/spl mu/m CMOS technology , 2004, IEEE Journal of Solid-State Circuits.

[5]  J.R. Long,et al.  A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 $\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[6]  Wanlop Surakampontorn,et al.  Performance Analysis and Design of Triple-Resonance Interstage Peaking for Wide-Band Cascaded CMOS Amplifiers , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  E. Kerherve,et al.  Modeling and Characterization of On-Chip Transformers for Silicon RFIC , 2007, IEEE Transactions on Microwave Theory and Techniques.

[8]  Remy Leblanc,et al.  Noise Measurements of Discrete HEMT Transistors and Application to Wideband Very Low-Noise Amplifiers , 2013, IEEE Transactions on Microwave Theory and Techniques.

[9]  Hong-Yeh Chang,et al.  Q-band low noise amplifiers using a 0.15μm MHEMT process for broadband communication and radio astronomy applications , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[10]  Kartikeya Mayaram,et al.  A 250 mV, 352 $\mu$W GPS Receiver RF Front-End in 130 nm CMOS , 2011, IEEE Journal of Solid-State Circuits.

[11]  Chau-Ching Chiong,et al.  Cryogenic evaluation of a 30–50 GHz 0.15-μm MHEMT low noise amplifier for radio astronomy applications , 2011, 2011 41st European Microwave Conference.

[12]  J.R. Long,et al.  Monolithic transformers for silicon RF IC design , 2000, IEEE Journal of Solid-State Circuits.

[13]  Shen-Iuan Liu,et al.  CMOS wideband amplifiers using multiple inductive-series peaking technique , 2005, IEEE Journal of Solid-State Circuits.

[14]  Frank A. Muller,et al.  High-Frequency Compensation of RC Amplifiers , 1954, Proceedings of the IRE.

[15]  Chau-Ching Chiong,et al.  Analysis and Design of Millimeter-Wave Low-Voltage CMOS Cascode LNA With Magnetic Coupled Technique , 2012, IEEE Transactions on Microwave Theory and Techniques.

[16]  W.R. Deal,et al.  Design and Analysis of Broadband Dual-Gate Balanced Low-Noise Amplifiers , 2007, IEEE Journal of Solid-State Circuits.

[17]  A. Hajimiri,et al.  Bandwidth enhancement for transimpedance amplifiers , 2004, IEEE Journal of Solid-State Circuits.

[18]  Jun-De Jin,et al.  A 40-Gb/s Transimpedance Amplifier in 0.18-$\mu$m CMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[19]  D. J. Cassan,et al.  A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS , 2003, IEEE J. Solid State Circuits.

[20]  M.P. van der Heijden,et al.  On the design of unilateral dual-loop feedback low-noise amplifiers with simultaneous noise, impedance, and IIP3 match , 2004, IEEE Journal of Solid-State Circuits.

[21]  Jun-De Jin,et al.  40-Gb/s Transimpedance Amplifier in 0.18-μm CMOS Technology , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[22]  H.A. Wheeler Wide-band amplifiers for television , 1984, Proceedings of the IEEE.

[23]  J. Roderick,et al.  Silicon-Based Ultra-Wideband Beam-Forming , 2006, IEEE Journal of Solid-State Circuits.

[24]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[25]  B. Razavi,et al.  Broadband ESD protection circuits in CMOS technology , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[26]  D.J. Allstot,et al.  Bandwidth Extension Techniques for CMOS Amplifiers , 2006, IEEE Journal of Solid-State Circuits.

[27]  Yi-Jan Emery Chen,et al.  A Ka-Band Low Noise Amplifier Using Forward Combining Technique , 2010, IEEE Microwave and Wireless Components Letters.

[28]  P. Garcia,et al.  A Wideband W-Band Receiver Front-End in 65-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[29]  J. C. Rudell,et al.  Analysis and Design of a Transformer-Feedback-Based Wideband Receiver , 2013, IEEE Transactions on Microwave Theory and Techniques.

[30]  Huei Wang,et al.  Analysis and Design of Millimeter-Wave Low-Power CMOS LNA With Transformer-Multicascode Topology , 2011, IEEE Transactions on Microwave Theory and Techniques.