Solitons and giants in matrix models

We present a method for solving BPS equations obtained in the collective-field approach to matrix models. The method enables us to find BPS solutions and quantum excitations around these solutions in the one-matrix model, and in general for the Calogero model. These semiclassical solutions correspond to giant gravitons described by matrix models obtained in the framework of AdS/CFT correspondence. The two-field model, associated with two types of giant gravitons, is investigated. In this duality-based matrix model we find the finite form of the n-soliton solution. The singular limit of this solution is examined and a realization of open-closed string duality is proposed.

[1]  Inês Aniceto,et al.  Notes on collective field theory of matrix and spin Calogero models , 2006, hep-th/0607152.

[2]  Abhishek Agarwal,et al.  BPS Operators in N=4 SYM: Calogero Models and 2D Fermions , 2006, hep-th/0602049.

[3]  G. Mandal,et al.  Exact operator bosonization of finite number of fermions in one space dimension , 2005, hep-th/0509164.

[4]  S. Meljanac,et al.  Comment on ``Solitons and excitations in the duality-based matrix model" , 2005, hep-th/0511146.

[5]  A. Jevicki,et al.  Matrix model maps in AdS/CFT correspondence , 2005, Physical Review D.

[6]  P. Wiegmann,et al.  Quantum hydrodynamics, the quantum benjamin-ono equation, and the Calogero model. , 2005, Physical review letters.

[7]  S. Meljanac,et al.  Solitons in the Calogero model for distinguishable particles , 2005, hep-th/0501221.

[8]  L. Jonke,et al.  Solitons and excitations in the duality-based matrix model , 2004, hep-th/0411179.

[9]  D. Jurman,et al.  Matrix-model dualities in the collective field formulation , 2004, hep-th/0411034.

[10]  Douglas J. Smith,et al.  Towards the solution to the giant graviton puzzle , 2004, hep-th/0401173.

[11]  L. Jonke,et al.  Quantum fluctuations in a dual matrix model , 2004 .

[12]  J. Maldacena,et al.  Bubbling AdS space and 1/2 BPS geometries , 2004, hep-th/0409174.

[13]  Pedro J. Silva,et al.  Giant gravitons in AdS/CFT (I): matrix model and back reaction , 2004, hep-th/0406096.

[14]  D. Berenstein A toy model for the AdS/CFT correspondence , 2004, hep-th/0403110.

[15]  A. Kapustin,et al.  Two-dimensional unoriented strings and matrix models , 2003, hep-th/0310195.

[16]  J. Maldacena,et al.  D-brane Decay in Two-Dimensional String Theory , 2003, hep-th/0305159.

[17]  J. McGreevy,et al.  Strings from Tachyons , 2003, hep-th/0304224.

[18]  I. Andrić,et al.  Duality and interacting families in models with the inverse-squared interaction , 2003, hep-th/0304006.

[19]  I. Andrić,et al.  Duality in the Low Dimensional Field Theory , 2002 .

[20]  L. Jonke,et al.  Duality and quasiparticles in the Calogero-Sutherland model: Some exact results , 2000, hep-th/0010033.

[21]  S. Corley,et al.  Exact Correlators of Giant Gravitons from dual N=4 SYM , 2001, hep-th/0111222.

[22]  P. Panigrahi,et al.  Realization of the Calogero-Moser scattering states as coherent states , 1999, quant-ph/9908045.

[23]  A. Polychronakos Generalized Statistics in One Dimension , 1999, hep-th/9902157.

[24]  G. Gibbons,et al.  Black holes and Calogero models , 1998, hep-th/9812034.

[25]  L. Jonke,et al.  Multi-vortex solution in the Sutherland model , 1996, hep-th/9605196.

[26]  L. Jonke,et al.  Solitons in the Calogero-Sutherland collective field model , 1994, hep-th/9411136.

[27]  Polychronakos Waves and solitons in the continuum limit of the Calogero-Sutherland model. , 1994, Physical review letters.

[28]  S. Rey,et al.  Collective field theory of the fractional quantum Hall edge state and the Calogero-Sutherland model , 1994, hep-th/9406192.

[29]  J. Minahan,et al.  Density-correlation functions in Calogero-Sutherland models. , 1994, Physical review. B, Condensed matter.

[30]  Simons,et al.  Exact dynamical correlations of the 1/r2 model. , 1993, Physical review. B, Condensed matter.

[31]  S. Iso,et al.  Explicit relation of the quantum Hall effect and the Calogero-Sutherland model , 1993, hep-th/9312001.

[32]  J. Minahan,et al.  Equivalence of two-dimensional QCD and the C = 1 matrix model , 1993, hep-th/9303153.

[33]  A. Jevicki Non-perturbative collective field theory , 1992 .

[34]  B. Sakita,et al.  One-dimensional fermions as two-dimensional droplets via Chern-Simons theory , 1992, hep-th/9202012.

[35]  J. Avan,et al.  Classical integrability and higher symmetries of collective string field theory , 1991 .

[36]  I. Andrić,et al.  Collective-field method for a U(N)-invariant model in the large-N limit , 1991 .

[37]  Sumit R. Das,et al.  STRING FIELD THEORY AND PHYSICAL INTERPRETATION OF D=1 STRINGS , 1990 .

[38]  R. Jackiw Dynamical symmetry of the magnetic vortex , 1990 .

[39]  I. Andrić,et al.  1/N corrections in Calogero-type models using the collective-field method , 1988 .

[40]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[41]  A. Perelomov,et al.  Quantum Integrable Systems Related to Lie Algebras , 1983 .

[42]  A. Jevicki,et al.  On the Large $N$ Limit in Symplectic Matrix Models , 1983 .

[43]  R. Jackiw Dynamical Symmetry of the Magnetic Monopole , 1980 .

[44]  G. Marchesini,et al.  Planar limit for SU(N) symmetric quantum dynamical systems , 1980 .

[45]  B. Sakita,et al.  The Quantum Collective Field Method and Its Application to the Planar Limit , 1980 .

[46]  G. Parisi,et al.  Planar diagrams , 1978 .

[47]  V. Alfaro,et al.  Conformal invariance in quantum mechanics , 1976 .

[48]  B. Sutherland Exact results for a quantum many body problem in one-dimension , 1971 .

[49]  F. Calogero Solution of a three-body problem in one-dimension , 1969 .

[50]  F. Calogero Ground State of a One‐Dimensional N‐Body System , 1969 .