Approximations of differentiable convex functions on arbitrary convex polytopes

Abstract Let X n ≔ { x i } i = 0 n be a given set of ( n + 1 ) pairwise distinct points in R d (called nodes or sample points), let P = conv ( X n ) , let f be a convex function with Lipschitz continuous gradient on P and λ ≔ { λ i } i = 0 n be a set of barycentric coordinates with respect to the point set X n . We analyze the error estimate between f and its barycentric approximation: B n [ f ] ( x ) = ∑ i = 0 n λ i ( x ) f ( x i ) , ( x ∈ P ) and present the best possible pointwise error estimates of f . Additionally, we describe the optimal barycentric coordinates that provide the best operator B n for approximating f by B n [ f ] . We show that the set of (linear finite element) barycentric coordinates generated by the Delaunay triangulation gives access to efficient algorithms for computing optimal approximations. Finally, numerical examples are used to show the success of the method.

[1]  Allal Guessab,et al.  Generalized barycentric coordinates and approximations of convex functions on arbitrary convex polytopes , 2013, Comput. Math. Appl..

[2]  V. T. Rajan,et al.  Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.

[3]  G. Schmeisser,et al.  Negative Definite Cubature Formulae, Extremality and Delaunay Triangulation , 2010 .

[4]  Gerhard Schmeisser,et al.  Multivariate approximation by a combination of modified Taylor polynomials , 2006 .

[5]  D. Hearn,et al.  The Minimum Covering Sphere Problem , 1972 .

[6]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[7]  Gerhard Schmeisser,et al.  Sharp Error Estimates for Interpolatory Approximation on Convex Polytopes , 2005, SIAM J. Numer. Anal..

[8]  Gerhard Schmeisser,et al.  Construction of positive definite cubature formulae and approximation of functions via Voronoi tessellations , 2010, Adv. Comput. Math..

[9]  Jie Sun,et al.  Solution Methodologies for the Smallest Enclosing Circle Problem , 2003, Comput. Optim. Appl..

[10]  Gerhard Schmeisser,et al.  Enhancement of the algebraic precision of a linear operator and consequences under positivity , 2009 .

[11]  A. Guessab DIRECT AND CONVERSE RESULTS FOR GENERALIZED MULTIVARIATE JENSEN-TYPE INEQUALITIES , 2013 .

[12]  Yang Liu,et al.  Stability analysis of M-dimensional asynchronous swarms with a fixed communication topology , 2003, IEEE Trans. Autom. Control..

[13]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[14]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[15]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[16]  John Arnold Kalman Continuity and convexity of projections and barycentric coordinates in convex polyhedra , 1961 .

[17]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[18]  G. Schmeisser,et al.  A Definiteness Theory for Cubature Formulae of Order Two , 2006 .

[19]  V. T. Rajan Optimality of the Delaunay triangulation in ℝd , 1994, Discret. Comput. Geom..

[20]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[21]  Gerhard Schmeisser,et al.  Convexity results and sharp error estimates in approximate multivariate integration , 2003, Math. Comput..

[22]  A multivariate extension of an inequality of Brenner–Alzer , 2012 .

[23]  Hongyan Wang,et al.  Social potential fields: A distributed behavioral control for autonomous robots , 1995, Robotics Auton. Syst..

[24]  Aidi Li,et al.  Convexity preserving interpolation , 1999, Comput. Aided Geom. Des..

[25]  Hermann A. Maurer,et al.  New Results and New Trends in Computer Science , 1991, Lecture Notes in Computer Science.