Passive wake detection using seal whisker-inspired sensing

Abstract : This thesis is motivated by biological experiments, which display the harbor seal's ability to track the wake of an object several seconds after it swam by. In this work, I elucidate the basic fluid mechanisms that seals may employ to accomplish this detection. Key are the unique vortex-induced vibration (VIV) properties resulting from the geometry of the harbor seal whisker. First, force measurements and flow visualizations on a rigid whisker model undergoing 1- D imposed oscillations show that the geometry passively reduces VIV (factor of 10), despite contributions from effective added mass and damping. This suggests that harbor seal whiskers would detect details of the oncoming flow with reduced background noise. Next, a biomimetic whisker sensor is designed by mounting the model on a four-armed flexure, allowing it to freely vibrate, and using strain gauges to measure deflections at the whisker base. Finally, this whisker device is towed behind an upstream cylinder with larger diameter. In the wake, the whisker oscillates with large amplitude and at the Strouhal frequency of the upstream cylinder. A slaloming motion among the wake vortices drives this interaction, and it enables detection of the upstream wake.

[1]  M. Donelan,et al.  Miniature drag sphere velocity probe. , 1978, The Review of scientific instruments.

[2]  Michael S. Triantafyllou,et al.  Calibration and validation of a harbor seal whisker-inspired flow sensor , 2013 .

[3]  Andrew S. French,et al.  Transduction Mechanisms of Mechanosensilla , 1988 .

[4]  D. Renouf Sensory reception and processing in Phocidae and Otariidae , 1991 .

[5]  Sang Joon Lee,et al.  Experimental investigation on wake behind a wavy cylinder having sinusoidal cross-sectional area variation , 2007 .

[6]  M. C. Cavusoglu,et al.  Whisker-Like Position Sensor for Measuring Physiological Motion , 2008, IEEE/ASME Transactions on Mechatronics.

[7]  Horst Bleckmann,et al.  Behavioral discrimination of water motions caused by moving objects , 2001, Journal of Comparative Physiology A.

[8]  J. Meneghini,et al.  Experimental investigation of flow-induced vibration interference between two circular cylinders , 2006 .

[9]  G. Dehnhardt,et al.  Tactile size discrimination by a California sea lion (Zalophus californianus) using its mystacial vibrissae , 1994, Journal of Comparative Physiology A.

[10]  G. Dehnhardt,et al.  Salinity discrimination in harbour seals: a sensory basis for spatial orientation in the marine environment? , 2000, Naturwissenschaften.

[11]  D. Schell,et al.  Growth rates of vibrissae of harbor seals (Phoca vitulina) and Steller sea lions (Eumetopias jubatus) , 2001 .

[12]  R. Elsner,et al.  Behavioral and physiological reactions of arctic seals during under-ice pilotage , 1989 .

[13]  J. Ling The skin and hair of the southern elephant seal, Mirounga leonina (Linn.) I. The facial vibrissae , 1966 .

[14]  A Kaminski,et al.  Sensitivity of the mystacial vibrissae of harbour seals (Phoca vitulina) for size differences of actively touched objects. , 1995, The Journal of experimental biology.

[15]  H. Bleckmann,et al.  Seal whiskers detect water movements , 1998, Nature.

[16]  Christopher D Gerber Design and vibration testing of a flexible seal whisker model , 2013 .

[17]  G. Kooyman An Analysis of Some Behavioral and Physiological Characteristics Related to Diving in the Weddell Seal , 2013 .

[18]  Joseph H. Solomon,et al.  Biomechanics: Robotic whiskers used to sense features , 2006, Nature.

[19]  G. Dehnhardt,et al.  Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina) , 2010, Journal of Experimental Biology.

[20]  R. Hallock,et al.  Somatosensation, Echolocation, and Underwater Sniffing: Adaptations Allow Mammals Without Traditional Olfactory Capabilities to Forage for Food Underwater , 2013, Zoological science.

[21]  U Eysel,et al.  Selective heating of vibrissal follicles in seals (Phoca vitulina) and dolphins (Sotalia fluviatilis guianensis). , 2000, The Journal of experimental biology.

[22]  Frederike D. Hanke,et al.  Flow sensing by pinniped whiskers , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[23]  D. Sumner,et al.  Wake structure of a finite circular cylinder of small aspect ratio , 2004 .

[24]  Daniel P. Costa,et al.  Unravelling the mysteries of a mesopelagic diet: a large apex predator specializes on small prey , 2013 .

[25]  R. Gopalkrishnan Vortex-induced forces on oscillating bluff cylinders , 1993 .

[26]  F. Fish,et al.  Morphological analysis of the bumpy profile of phocid vibrissae , 2009 .

[27]  Guido Dehnhardt,et al.  Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae) , 2012, Journal of Comparative Physiology A.

[28]  M. Appleby,et al.  A bio-inspired artificial whisker for fluid motion sensing with increased sensitivity and reliability , 2011, 2011 IEEE SENSORS Proceedings.

[29]  A. Sayers,et al.  FLOW OVER TWO CYLINDERS OF DIFFERENT DIAMETERS: THE LOCK-IN EFFECT , 1994 .

[30]  Pablo Valdivia y Alvarado,et al.  Design of a bio-inspired whisker sensor for underwater applications , 2012, 2012 IEEE Sensors.

[31]  W. Bowen,et al.  Prey-dependent foraging tactics and prey profitability in a marine mammal , 2002 .

[32]  Wolfgang Schröder,et al.  Deflection-based flow field sensors — examples and requirements , 2012 .

[33]  K. Schwenk,et al.  Why Snakes Have Forked Tongues , 1994, Science.

[34]  Charles H. K. Williamson,et al.  Defining the ‘modified Griffin plot’ in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping , 2006, Journal of Fluid Mechanics.

[35]  G. Dehnhardt,et al.  Thermoregulation of the vibrissal system in harbor seals (Phoca vitulina) and Cape fur seals (Arctocephalus pusillus pusillus) , 2014 .

[36]  V. Scheffer,et al.  The Harbor Seal in Washington State , 1944 .

[37]  Junliang Tao,et al.  Hair flow sensors: from bio-inspiration to bio-mimicking—a review , 2012 .

[38]  G. Oliver Navigation in Mazes By a Grey Seal, Halichoer Us Gr Yp Us (Fabricius) , 1978 .

[39]  M S Triantafyllou,et al.  Mechanical characteristics of harbor seal (Phoca vitulina) vibrissae under different circumstances and their implications on its sensing methodology , 2014, Bioinspiration & biomimetics.

[40]  Benton H. Calhoun,et al.  Effect of Angle on Flow-Induced Vibrations of Pinniped Vibrissae , 2013, PloS one.

[41]  K. Catania,et al.  Function of the appendages in tentacled snakes (Erpeton tentaculatus) , 2010, Journal of Experimental Biology.

[42]  Frederike D. Hanke,et al.  Harbor Seals (Phoca vitulina) Can Perceive Optic Flow under Water , 2014, PloS one.

[43]  김진성 Distributed forcing of flow over a circular cylinder , 2005 .

[44]  G. Dehnhardt,et al.  Hydrodynamic Perception in Seals and Sea Lions , 2014 .

[45]  A. Roshko On the development of turbulent wakes from vortex streets , 1953 .

[46]  Charles H. K. Williamson,et al.  Employing controlled vibrations to predict fluid forces on a cylinder undergoing vortex-induced vibration , 2006 .

[47]  Peter W. Bearman,et al.  Suppression of Kármán Vortex Shedding , 2000 .

[48]  Xikun Wang,et al.  Particle image velocimetry technique measurements of the near wake behind a cylinder-pair of unequal diameters , 2013 .

[49]  Turgut Sarpkaya,et al.  A critical review of the intrinsic nature of vortex-induced vibrations , 2004 .

[50]  R. Dykes Afferent fibers from mystacial vibrissae of cats and seals. , 1975, Journal of neurophysiology.

[51]  G. Dehnhardt,et al.  The Functional Significance of the Vibrissal System of Marine Mammals , 2003 .

[52]  W. F. Flanigan,et al.  Marine mammal chemoreception , 1980 .

[53]  Guido Dehnhardt,et al.  Preliminary Results from Psychophysical Studies on the Tactile Sensitivity in Marine Mammals , 1990 .

[54]  K. Lam,et al.  Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers , 2009, Journal of Fluid Mechanics.

[55]  N. Schulte-Pelkum,et al.  Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina) , 2007, Journal of Experimental Biology.

[56]  G. Weymouth Chaotic rotation of a towed elliptical cylinder , 2013, Journal of Fluid Mechanics.

[57]  Peter W. Bearman,et al.  Passive control of VIV with drag reduction , 2001 .

[58]  H. Hyvärinen On the histology and histochemistry of the snout and vibrissae of the common shrew (Sorex araneus L.) , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[59]  G. Dehnhardt,et al.  Effect of water turbidity on the visual acuity of harbor seals (Phoca vitulina) , 2006, Vision Research.

[60]  T. Poulter,et al.  Sonar Signals of the Sea Lion , 1963, Science.

[61]  J. K. Vandiver,et al.  HYDRODYNAMIC DAMPING ON FLEXIBLE CYLINDERS IN SHEARED FLOW , 1987 .

[62]  R. Shine,et al.  To find an ant: trail-following in Australian blindsnakes (Typhlopidae) , 1992, Animal Behaviour.

[63]  M. Triantafyllou,et al.  Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion , 1993 .

[64]  L. Fuiman,et al.  Hunting behavior of a marine mammal beneath the antarctic fast Ice , 1999, Science.

[66]  Guido Dehnhardt,et al.  Hydrodynamic trail following in a California sea lion (Zalophus californianus) , 2011, Journal of Comparative Physiology A.

[67]  Guido Dehnhardt,et al.  Basic mechanisms in pinniped vision , 2009, Experimental Brain Research.

[68]  S. Sherwin,et al.  The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair , 2013, Journal of Fluid Mechanics.

[69]  G. Dehnhardt,et al.  Structure and innervation of the vibrissal follicle‐sinus complex in the Australian water rat, Hydromys chrysogaster , 1999, The Journal of comparative neurology.

[70]  Detection of hydrodynamic stimuli by the Florida manatee (Trichechus manatus latirostris) , 2013, Journal of Comparative Physiology A.

[71]  Determination of the vibration sensitivity of harbour seal Phoca vitulina (L.) vibrissae , 1986 .

[72]  Charles H. K. Williamson,et al.  Vortex-induced vibrations of a pivoted cylinder , 2005, Journal of Fluid Mechanics.

[73]  Frank E. Fish,et al.  Fused Traditional and Geometric Morphometrics Demonstrate Pinniped Whisker Diversity , 2012, PloS one.

[74]  V. Popov,et al.  Topical organization of somatic projections in the fur seal cerebral cortex , 2005, Neurophysiology.

[75]  D. Renouf Preliminary measurements of the sensitivity of the vibrissae of Harbour seals (Phoca vitulina) to low frequency vibrations , 2009 .

[76]  S. Tan,et al.  Wake flow behaviour behind a smaller cylinder oscillating in the wake of an upstream stationary cylinder , 2014 .

[77]  Franz S. Hover,et al.  Forces on oscillating uniform and tapered cylinders in cross flow , 1998, Journal of Fluid Mechanics.

[78]  C. Williamson,et al.  Vortex-Induced Vibrations , 2004, Wind Effects on Structures.

[79]  Thomas Staubli,et al.  Calculation of the Vibration of an Elastically Mounted Cylinder Using Experimental Data From Forced Oscillation , 1983 .

[80]  Michael S. Triantafyllou,et al.  Three-dimensionality effects in flow around two tandem cylinders , 2006, Journal of Fluid Mechanics.

[81]  Ad. J. Kalmijn,et al.  Detection of Weak Electric Fields , 1988 .

[82]  G. Lauder,et al.  Passive propulsion in vortex wakes , 2006, Journal of Fluid Mechanics.

[83]  George V Lauder,et al.  Experimental Hydrodynamics of Fish Locomotion: Functional Insights from Wake Visualization1 , 2002, Integrative and comparative biology.

[84]  Franz S. Hover,et al.  Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers , 2010, Journal of Fluid Mechanics.

[85]  Jelle Atema,et al.  The importance of the lateral line in nocturnal predation of piscivorous catfish , 2004, Journal of Experimental Biology.

[86]  Jingyin Li,et al.  Experimental investigation of the mean and fluctuating forces of wavy (varicose) cylinders in a cross-flow , 2004 .

[87]  D. Renouf Fishing in Captive Harbour Seals (Phoca Vitulina Concolor): a Possible Role for Vibrissae , 1979 .

[88]  Franz S. Hover,et al.  GALLOPING RESPONSE OF A CYLINDER WITH UPSTREAM WAKE INTERFERENCE , 2001 .

[89]  Joseph C. Gaspard,et al.  Manatee vibrissae: evidence for a “lateral line” function , 2011, Annals of the New York Academy of Sciences.

[90]  H. Bleckmann,et al.  The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. , 2000, The Journal of experimental biology.

[91]  H. F. Gaydos Sensitivity in the judgment of size by finger-span. , 1958, The American journal of psychology.

[92]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[93]  G. Spedding The evolution of initially turbulent bluff-body wakes at high internal Froude number , 1997, Journal of Fluid Mechanics.

[94]  C. Feng The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders , 1968 .

[95]  M. M. Zdravkovich,et al.  Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding , 1981 .

[96]  Lr Wooton,et al.  PREVENTING WIND-INDUCED OSCILLATIONS OF STRUCTURES OF CIRCULAR SECTION. , 1970 .

[97]  E. Hobson,et al.  Visual Orientation and Feeding in Seals and Sea Lions , 1966, Nature.

[98]  K B Døving,et al.  Behaviour of dogs during olfactory tracking. , 1993, The Journal of experimental biology.

[99]  G. Dehnhardt,et al.  High olfactory sensitivity for dimethyl sulphide in harbour seals , 2006, Biology Letters.

[100]  Guido Dehnhardt,et al.  Hydrodynamic Perception in Pinnipeds , 2012 .

[101]  Anwar Ahmed,et al.  Transverse flow over a wavy cylinder , 1992 .

[102]  M. Hartmann,et al.  Mechanical Characteristics of Rat Vibrissae: Resonant Frequencies and Damping in Isolated Whiskers and in the Awake Behaving Animal , 2003, The Journal of Neuroscience.

[103]  R. Blevins,et al.  Flow-Induced Vibration , 1977 .

[104]  K. Catania Tactile sensing in specialized predators – from behavior to the brain , 2012, Current Opinion in Neurobiology.

[105]  R. King,et al.  Vortex-excited vibrations of cylinders and cables and their suppression , 1982 .

[106]  G. Dehnhardt,et al.  The impact of glide phases on the trackability of hydrodynamic trails in harbour seals (Phoca vitulina) , 2010, Journal of Experimental Biology.

[107]  F. Grasso,et al.  Tracking wakes: The nocturnal predatory strategy of piscivorous catfish , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[108]  R. Schusterman,et al.  Why pinnipeds don't echolocate. , 2000, The Journal of the Acoustical Society of America.

[109]  D. M. Bushnell,et al.  DRAG REDUCTION IN NATURE , 1991 .

[110]  Charlotte Barbier,et al.  Design, Fabrication and Testing of a Bioinspired Hybrid Hair-Like Fluid Motion Sensor Array , 2007 .

[111]  J. Eddington,et al.  GROWTH RATE AND SHEDDING OF VIBRISSAE IN THE GRAY SEAL, HALICHOERUS GRYPUS: A CAUTIONARY NOTE FOR STABLE ISOTOPE DIET ANALYSIS , 2004 .

[112]  Charles H. K. Williamson,et al.  Prediction of vortex-induced vibration response by employing controlled motion , 2009, Journal of Fluid Mechanics.

[113]  H. Bleckmann,et al.  Hydrodynamic Trail-Following in Harbor Seals (Phoca vitulina) , 2001, Science.

[114]  S. Lee,et al.  PIV measurements of the near-wake behind a sinusoidal cylinder , 2005 .

[115]  Frederike D. Hanke,et al.  Harbor seal vibrissa morphology suppresses vortex-induced vibrations , 2010, Journal of Experimental Biology.

[116]  Kit Ming Lam,et al.  Interference effect of an upstream larger cylinder on the lock-in vibration of a flexibly mounted circular cylinder , 2003 .

[117]  A. Ahl The role of vibrissae in behavior: A status review , 1986, Veterinary Research Communications.

[118]  P. Bearman VORTEX SHEDDING FROM OSCILLATING BLUFF BODIES , 1984 .

[119]  Peter W. Bearman,et al.  On the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism , 2010, Journal of Fluid Mechanics.

[120]  Wolf Hanke,et al.  The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry , 2004, Journal of Experimental Biology.

[121]  H. Hyvärinen Diving in darkness: whiskers as sense organs of the ringed seal (Phoca hispida saimensis) , 1989 .

[122]  Björn Mauck,et al.  Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina) , 2011, Journal of Experimental Biology.

[123]  G. Lauder,et al.  Fish Exploiting Vortices Decrease Muscle Activity , 2003, Science.

[124]  Guido Dehnhardt,et al.  On the Wake Flow Dynamics behind Harbor Seal Vibrissae – A Fluid Mechanical Explanation for an Extraordinary Capability , 2012 .

[125]  Isao Shimoyama,et al.  An air flow sensor modeled on wind receptor hairs of insects , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[126]  William A. Watkins,et al.  SENSORY BIOPHYSICS OF MARINE MAMMALS , 1985 .

[127]  Lisa F. Shatz,et al.  The Frequency Response of the Vibrissae of Harp Seal, Pagophilus Groenlandicus, to Sound in Air and Water , 2013, PloS one.