Difficulty Controllable and Scalable Constrained Multi-objective Test Problems

In this paper, we propose a general toolkit to construct constrained multi-objective optimisation problems (CMOPs) with three different kinds of constraint functions. Based on this toolkit, we suggested eight constrained multi-objective optimisation problems named CMOP1-CMOP8. As the ratio of feasible regions in the whole search space determines the difficulty of a constrained multi-objective optimisation problem, we propose four test instances CMOP3-6, which have very low ratio of feasible regions. To study the difficulties of proposed test instances, we make some experiments with two popular CMOEAs - MOEA/D-CDP and NSGA-II-CDP, and analysed their performances.

[1]  Qingfu Zhang,et al.  An External Archive Guided Multiobjective Evolutionary Algorithm Based on Decomposition for Combinatorial Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[2]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[3]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[4]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[5]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[6]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[7]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[8]  Qingfu Zhang,et al.  Multiobjective test problems with complicated Pareto fronts: Difficulties in degeneracy , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[9]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[10]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[11]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[12]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[13]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[14]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[15]  Qingfu Zhang,et al.  Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems , 2014, IEEE Transactions on Evolutionary Computation.

[16]  Erik D. Goodman,et al.  A New Repair Operator for Multi-objective Evolutionary Algorithm in Constrained Optimization Problems , 2015, ArXiv.

[17]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[18]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[19]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[20]  Junichi Suzuki,et al.  R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.