Nanostructured anodes for solid oxide fuel cells

Solid oxide fuel cells (SOFC) have much promise as efficient devices for the direct conversion of the energy stored in chemical fuels into electricity. The development of highly robust SOFC that can operate on a range of fuels, however, requires improvements in the electrodes, especially the anode, where nanoscale engineering of the structure is required in order to maximize the number of sites where the electrochemical reactions take place. In this article we review the approaches that are currently being used to improve anode performance and microstructure with a focus on new materials and synthesis techniques.

[1]  M. Hatano,et al.  Direct Oxidation of Methane by Pd–Ni Bimetallic Catalyst over Lanthanum Chromite Based Anode for SOFC , 2005 .

[2]  J. Vohs,et al.  Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes , 2006 .

[3]  M. Ihara,et al.  Quickly rechargeable direct carbon solid oxide fuel cell with propane for recharging , 2006 .

[4]  Mogens Bjerg Mogensen,et al.  In Situ Observations of Microstructural Changes in SOFC Anodes during Redox Cycling , 2006 .

[5]  J. Conesa,et al.  Catalytic properties of monometallic copper and bimetallic copper-nickel systems combined with ceria and Ce-X (X = Gd, Tb) mixed oxides applicable as SOFC anodes for direct oxidation of methane , 2007 .

[6]  S. Linic,et al.  Controlling carbon surface chemistry by alloying: carbon tolerant reforming catalyst. , 2006, Journal of the American Chemical Society.

[7]  Kuan-Zong Fung,et al.  The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance I. Theoretical Analysis , 1997 .

[8]  S. McIntosh,et al.  The rate and selectivity of methane oxidation over La0.75Sr0.25CrxMn1−xO3−δ as a function of lattice oxygen stoichiometry under solid oxide fuel cell anode conditions , 2008 .

[9]  Guiling Wang,et al.  Direct carbon fuel cell: Fundamentals and recent developments , 2007 .

[10]  A. Virkar,et al.  Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters , 2005 .

[11]  S. Barnett,et al.  An Octane-Fueled Solid Oxide Fuel Cell , 2005, Science.

[12]  J. Vohs,et al.  SOFC cathodes prepared by infiltration with various LSM precursors , 2006 .

[13]  L. D. Jonghe,et al.  Ceria Nanocoating for Sulfur Tolerant Ni-Based Anodes of Solid Oxide Fuel Cells , 2007 .

[14]  Y. Matsuzaki,et al.  The Poisoning Effect of Sulfur-Containing Impurity Gas on a SOFC Anode: Part I , 2000 .

[15]  S. McIntosh,et al.  The Influence of Current Density on the Electrocatalytic Activity of Oxide-Based Direct Hydrocarbon SOFC Anodes , 2008 .

[16]  A. Atkinson,et al.  Changes in Physical and Mechanical Properties of SOFC Ni–YSZ Composites Caused by Redox Cycling , 2008 .

[17]  Catherine M. Grgicak,et al.  Synergistic effects of Ni1−xCox-YSZ and Ni1−xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S , 2008 .

[18]  J. Irvine,et al.  Anodic performance and intermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.5O3-δat lanthanum gallate electrolytes , 2006 .

[19]  J. Irvine,et al.  Discovery and characterization of novel oxide anodes for solid oxide fuel cells. , 2004, Chemical record.

[20]  D. Dees,et al.  Conductivity of porous Ni/ZrO/sub 2/-Y/sub 2/O/sub 3/ cermets , 1987 .

[21]  A. N. Busawon,et al.  Ni Infiltration as a Possible Solution to the Redox Problem of SOFC Anodes , 2008 .

[22]  A. Atkinson,et al.  Oxidation failure modes of anode-supported solid oxide fuel cells , 2008 .

[23]  Wang Shaoliang,et al.  Preparation and performance characterization of the Fe–Ni/ScSZ cermet anode for oxidation of ethanol fuel in SOFCs , 2007 .

[24]  Steven J. Visco,et al.  Synthesis of Dispersed and Contiguous Nanoparticles in Solid Oxide Fuel Cell Electrodes , 2008 .

[25]  S. Linic,et al.  Hydrocarbon steam reforming on Ni alloys at solid oxide fuel cell operating conditions , 2008 .

[26]  Nigel P. Brandon,et al.  High performance cathode-supported SOFC with perovskite anode operating in weakly humidified hydrogen and methane , 2007 .

[27]  John T. S. Irvine,et al.  A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes , 2006 .

[28]  J. Canales‐Vázquez,et al.  Mn-substituted titanates as efficient anodes for direct methane SOFCs , 2006 .

[29]  Daniel Knapp,et al.  Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction , 2007 .

[30]  D. P. Fagg,et al.  Electrochemical behaviour and degradation of (Ni,M)/YSZ cermet electrodes (M=Co,Cu,Fe) for high temperature applications of solid electrolytes , 2004 .

[31]  Turgut M. Gür,et al.  Direct carbon conversion in a helium fluidized bed fuel cell , 2008 .

[32]  Michael D. Gross,et al.  An Examination of SOFC Anode Functional Layers Based on Ceria in YSZ , 2007 .

[33]  Juan Carlos Ruiz-Morales,et al.  On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells , 2006 .

[34]  Hongpeng He,et al.  Sulphur tolerant shift reaction catalysts for nickel-based SOFC anode , 2008 .

[35]  Raymond J. Gorte,et al.  Tape Cast Solid-Oxide Fuel Cells for the Direct Oxidation of Hydrocarbons , 2001 .

[36]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[37]  J. Vohs,et al.  SOFC Anodes Based on LST–YSZ Composites and on Y0.04Ce0.48Zr0.48O2 , 2008 .

[38]  S. Chan,et al.  (La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells , 2006 .

[39]  J. Irvine,et al.  Synthesis and Characterization of ( La0.75Sr0.25 ) Cr0.5Mn0.5 O 3 − δ , a Redox-Stable, Efficient Perovskite Anode for SOFCs , 2004 .

[40]  F. Tietz,et al.  La0.4Sr0.6Ti1 − x Mn x O3 − δ Perovskites as Anode Materials for Solid Oxide Fuel Cells , 2006 .

[41]  F. R. Foulkes,et al.  Fuel Cell Handbook , 1989 .

[42]  J. Vohs,et al.  Highly Sulfur Tolerant Cu-Ceria Anodes for SOFCs , 2005 .

[43]  Tal Z. Sholklapper,et al.  Nanostructured Solid Oxide Fuel Cell Electrodes , 2007 .

[44]  Christopher S. Johnson,et al.  Sulfur-tolerant anode materials for solid oxide fuel cell application , 2007 .

[45]  Tal Z. Sholklapper,et al.  Synthesis and Stability of a Nanoparticle-Infiltrated Solid Oxide Fuel Cell Electrode , 2007 .

[46]  John B. Goodenough,et al.  Synthesis and Characterization of Sr2MgMoO6 − δ An Anode Material for the Solid Oxide Fuel Cell , 2006 .

[47]  John B Goodenough,et al.  Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells , 2006, Science.

[48]  J. Vohs,et al.  Engineering Composite Oxide SOFC Anodes for Efficient Oxidation of Methane , 2008 .

[49]  R. Gorte,et al.  Direct hydrocarbon solid oxide fuel cells. , 2004, Chemical reviews.

[50]  Raymond J. Gorte,et al.  A Study of SOFC Anodes Based on Cu-Ni and Cu-Co Bimetallics in CeO2 ­ YSZ , 2004 .

[51]  Y. L. Liu,et al.  Microstructure degradation of an anode/electrolyte interface in SOFC studied by transmission electron microscopy , 2005 .

[52]  Tao Sh.W.,et al.  Catalytic Properties of the Perovskite Oxide La0.75Sr0.25Cr0.5Fe0.5O3-δ in Relation to Its Potential as a Solid Oxide Fuel Cell Anode Material , 2004 .

[53]  John T. S. Irvine,et al.  Solid state electrochemistry of direct carbon/air fuel cells , 2008 .

[54]  Raymond J. Gorte,et al.  Cu-Co Bimetallic Anodes for Direct Utilization of Methane in SOFCs , 2005 .

[55]  N. Christiansen,et al.  Sites for catalysis and electrochemistry in solid oxide fuel cell (SOFC) anode , 2006 .

[56]  Dimitris Sarantaridis,et al.  Redox Cycling of Ni‐Based Solid Oxide Fuel Cell Anodes: A Review , 2007 .

[57]  W. L. Worrell,et al.  Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells , 2002 .

[58]  H. Wise,et al.  Thermodynamics of sulfur chemisorption on metals. I. Alumina‐supported nickel , 1980 .

[59]  Mogens Bjerg Mogensen,et al.  Effects of impurities on microstructure in Ni/YSZ–YSZ half-cells for SOFC , 2003 .

[60]  S. Jiang,et al.  A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells , 2006 .

[61]  K. Poeppelmeier,et al.  Application of LaSr2Fe2CrO9 − δ in Solid Oxide Fuel Cell Anodes , 2008 .

[62]  Michael D. Gross,et al.  Recent progress in SOFC anodes for direct utilization of hydrocarbons , 2007 .

[63]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[64]  Michael D. Gross,et al.  Electrodeposition of Cu into a Highly Porous Ni ∕ YSZ Cermet , 2006 .