Slepian functions and their use in signal estimation and spectral analysis

It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and on the surface of a sphere.

[1]  Y. Shkolnisky Prolate spheroidal wave functions on a disc—Integration and approximation of two-dimensional bandlimited functions , 2007 .

[2]  Peiliang Xu,et al.  Determination of surface gravity anomalies using gradiometric observables , 1992 .

[3]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[4]  A. Walden,et al.  Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .

[5]  A. Messiah Quantum Mechanics , 1961 .

[6]  A. R. Edmonds Angular Momentum in Quantum Mechanics , 1957 .

[7]  S. Mallat A wavelet tour of signal processing , 1998 .

[8]  Mark A. Wieczorek,et al.  Spatiospectral Concentration on a Sphere , 2004, SIAM Rev..

[9]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1987 .

[10]  Reiner Rummel,et al.  Geodetic boundary value problems in view of the one centimeter geoid , 1997 .

[11]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. I. Theory , 1973 .

[12]  Frederik J. Simons,et al.  Efficient analysis and representation of geophysical processes using localized spherical basis functions , 2009, Optical Engineering + Applications.

[13]  F. Simons,et al.  Spherical Slepian functions and the polar gap in geodesy , 2005, math/0603271.

[14]  Duncan J. Wingham The reconstruction of a band-limited function and its Fourier transform from a finite number of samples at arbitrary locations by singular value decomposition , 1992, IEEE Trans. Signal Process..

[15]  Frederik J. Simons,et al.  A spatiospectral localization approach to estimating potential fields on the surface of a sphere from noisy, incomplete data taken at satellite altitudes , 2007, SPIE Optical Engineering + Applications.

[16]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[17]  Frederik J. Simons,et al.  Isostatic response of the Australian lithosphere: Estimation of effective elastic thickness and anisotropy using multitaper spectral analysis , 2000 .

[18]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[19]  F. Simons,et al.  Spectral estimation on a sphere in geophysics and cosmology , 2007, 0705.3083.

[20]  F. Simons,et al.  Spatiospectral concentration in the Cartesian plane , 2010, 1007.5226.

[21]  Edward Roy Pike,et al.  Generalized Gaussian quadrature applied to an inverse problem in antenna theory : II: The two-dimensional case with circular symmetry , 2003 .

[22]  M. G. Hauser,et al.  Statistical analysis of catalogs of extragalactic objects. II - The Abell catalog of rich clusters , 1973 .

[23]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[24]  I. Daubechies,et al.  Time-frequency localisation operators-a geometric phase space approach: II. The use of dilations , 1988 .

[25]  Thomas P. Bronez,et al.  Spectral estimation of irregularly sampled multidimensional processes by generalized prolate spheroidal sequences , 1988, IEEE Trans. Acoust. Speech Signal Process..

[26]  W. M. Kaula,et al.  Theory of statistical analysis of data distributed over a sphere , 1967 .

[27]  Peiliang Xu Truncated SVD methods for discrete linear ill-posed problems , 1998 .

[28]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[29]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[30]  Alan D. Chave,et al.  On the robust estimation of power spectra, coherences, and transfer functions , 1987 .

[31]  F. Simons,et al.  Parametrizing surface wave tomographic models with harmonic spherical splines , 2008 .

[32]  E. N. Gilbert,et al.  Doubly Orthogonal Concentrated Polynomials , 1977 .

[33]  David N. Spergel,et al.  An Efficient Technique to Determine the Power Spectrum from Cosmic Microwave Background Sky Maps , 1998, astro-ph/9805339.

[34]  Richard H. Jones,et al.  Stochastic Processes on a Sphere , 1963 .

[35]  Willi Freeden,et al.  Combined Spherical Harmonic and Wavelet Expansion—A Future Concept in Earth's Gravitational Determination , 1997 .

[36]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[37]  Max Tegmark How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.

[38]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[39]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[40]  F. Simons,et al.  Localized spectral analysis on the sphere , 2005 .

[41]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[42]  M. Zuhair Nashed,et al.  General sampling theorems for functions in reproducing kernel Hilbert spaces , 1991, Math. Control. Signals Syst..

[43]  Kurt S. Riedel,et al.  Minimum bias multiple taper spectral estimation , 2018, IEEE Trans. Signal Process..

[44]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[45]  Guust Nolet,et al.  On the potential of recording earthquakes for global seismic tomography by low‐cost autonomous instruments in the oceans , 2009 .

[46]  Best unbiased estimates for the microwave background anisotropies , 1997, gr-qc/9702018.

[47]  Simon Haykin,et al.  Advances in spectrum analysis and array processing , 1991 .

[48]  D.J. Thomson,et al.  Jackknifing Multitaper Spectrum Estimates , 2007, IEEE Signal Processing Magazine.

[49]  Arthur Schuster,et al.  On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena , 1898 .

[50]  Frederik J. Simons,et al.  Spatiospectral localization of global geopotential fields from the Gravity Recovery and Climate Experiment (GRACE) reveals the coseismic gravity change owing to the 2004 Sumatra‐Andaman earthquake , 2008 .

[51]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[52]  L. Knox,et al.  Determination of inflationary observables by cosmic microwave background anisotropy experiments. , 1995, Physical review. D, Particles and fields.

[53]  D. Slepian,et al.  Eigenvalues associated with prolate spheroidal wave functions of zero order , 1965 .

[54]  Philip Crotwell Constructive Approximation on the Sphere , 2000 .

[55]  H. Landau The eigenvalue behavior of certain convolution equations , 1965 .

[56]  Ingrid Daubechies,et al.  Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.

[57]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[58]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[59]  Kung Yao,et al.  Applications of Reproducing Kernel Hilbert Spaces-Bandlimited Signal Models , 1967, Inf. Control..

[60]  D. Slepian,et al.  On bandwidth , 1976, Proceedings of the IEEE.

[61]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[62]  Alfred Hanssen Multidimensional multitaper spectral estimation , 1997, Signal Process..

[63]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[64]  M. Kendall Theoretical Statistics , 1956, Nature.

[65]  C. T. Mullis,et al.  Quadratic Estimators of the Power Spectrum , 1989 .

[66]  W. Menke Geophysical data analysis , 1984 .

[67]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[68]  F. Grünbaum Eigenvectors of a Toeplitz Matrix: Discrete Version of the Prolate Spheroidal Wave Functions , 1981 .

[69]  Nico Sneeuw,et al.  The polar gap , 1997 .

[70]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[71]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[72]  Frederik J. Simons,et al.  Minimum-Variance Multitaper Spectral Estimation on the Sphere , 2007, 1306.3254.

[73]  F. Sansò,et al.  Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere , 1999 .