Slepian functions and their use in signal estimation and spectral analysis
暂无分享,去创建一个
[1] Y. Shkolnisky. Prolate spheroidal wave functions on a disc—Integration and approximation of two-dimensional bandlimited functions , 2007 .
[2] Peiliang Xu,et al. Determination of surface gravity anomalies using gradiometric observables , 1992 .
[3] Max Tegmark,et al. Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.
[4] A. Walden,et al. Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .
[5] A. Messiah. Quantum Mechanics , 1961 .
[6] A. R. Edmonds. Angular Momentum in Quantum Mechanics , 1957 .
[7] S. Mallat. A wavelet tour of signal processing , 1998 .
[8] Mark A. Wieczorek,et al. Spatiospectral Concentration on a Sphere , 2004, SIAM Rev..
[9] J. Bendat,et al. Random Data: Analysis and Measurement Procedures , 1987 .
[10] Reiner Rummel,et al. Geodetic boundary value problems in view of the one centimeter geoid , 1997 .
[11] Phillip James Edwin Peebles,et al. Statistical analysis of catalogs of extragalactic objects. I. Theory , 1973 .
[12] Frederik J. Simons,et al. Efficient analysis and representation of geophysical processes using localized spherical basis functions , 2009, Optical Engineering + Applications.
[13] F. Simons,et al. Spherical Slepian functions and the polar gap in geodesy , 2005, math/0603271.
[14] Duncan J. Wingham. The reconstruction of a band-limited function and its Fourier transform from a finite number of samples at arbitrary locations by singular value decomposition , 1992, IEEE Trans. Signal Process..
[15] Frederik J. Simons,et al. A spatiospectral localization approach to estimating potential fields on the surface of a sphere from noisy, incomplete data taken at satellite altitudes , 2007, SPIE Optical Engineering + Applications.
[16] D. Slepian. Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.
[17] Frederik J. Simons,et al. Isostatic response of the Australian lithosphere: Estimation of effective elastic thickness and anisotropy using multitaper spectral analysis , 2000 .
[18] D. Donoho,et al. Uncertainty principles and signal recovery , 1989 .
[19] F. Simons,et al. Spectral estimation on a sphere in geophysics and cosmology , 2007, 0705.3083.
[20] F. Simons,et al. Spatiospectral concentration in the Cartesian plane , 2010, 1007.5226.
[21] Edward Roy Pike,et al. Generalized Gaussian quadrature applied to an inverse problem in antenna theory : II: The two-dimensional case with circular symmetry , 2003 .
[22] M. G. Hauser,et al. Statistical analysis of catalogs of extragalactic objects. II - The Abell catalog of rich clusters , 1973 .
[23] U. Toronto,et al. Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.
[24] I. Daubechies,et al. Time-frequency localisation operators-a geometric phase space approach: II. The use of dilations , 1988 .
[25] Thomas P. Bronez,et al. Spectral estimation of irregularly sampled multidimensional processes by generalized prolate spheroidal sequences , 1988, IEEE Trans. Acoust. Speech Signal Process..
[26] W. M. Kaula,et al. Theory of statistical analysis of data distributed over a sphere , 1967 .
[27] Peiliang Xu. Truncated SVD methods for discrete linear ill-posed problems , 1998 .
[28] P. Laguna,et al. Signal Processing , 2002, Yearbook of Medical Informatics.
[29] L. Cohen,et al. Time-frequency distributions-a review , 1989, Proc. IEEE.
[30] Alan D. Chave,et al. On the robust estimation of power spectra, coherences, and transfer functions , 1987 .
[31] F. Simons,et al. Parametrizing surface wave tomographic models with harmonic spherical splines , 2008 .
[32] E. N. Gilbert,et al. Doubly Orthogonal Concentrated Polynomials , 1977 .
[33] David N. Spergel,et al. An Efficient Technique to Determine the Power Spectrum from Cosmic Microwave Background Sky Maps , 1998, astro-ph/9805339.
[34] Richard H. Jones,et al. Stochastic Processes on a Sphere , 1963 .
[35] Willi Freeden,et al. Combined Spherical Harmonic and Wavelet Expansion—A Future Concept in Earth's Gravitational Determination , 1997 .
[36] D. Slepian,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .
[37] Max Tegmark. How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.
[38] D. Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .
[39] D. Thomson,et al. Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.
[40] F. Simons,et al. Localized spectral analysis on the sphere , 2005 .
[41] M. Halpern,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.
[42] M. Zuhair Nashed,et al. General sampling theorems for functions in reproducing kernel Hilbert spaces , 1991, Math. Control. Signals Syst..
[43] Kurt S. Riedel,et al. Minimum bias multiple taper spectral estimation , 2018, IEEE Trans. Signal Process..
[44] W. Menke. Geophysical data analysis : discrete inverse theory , 1984 .
[45] Guust Nolet,et al. On the potential of recording earthquakes for global seismic tomography by low‐cost autonomous instruments in the oceans , 2009 .
[46] Best unbiased estimates for the microwave background anisotropies , 1997, gr-qc/9702018.
[47] Simon Haykin,et al. Advances in spectrum analysis and array processing , 1991 .
[48] D.J. Thomson,et al. Jackknifing Multitaper Spectrum Estimates , 2007, IEEE Signal Processing Magazine.
[49] Arthur Schuster,et al. On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena , 1898 .
[50] Frederik J. Simons,et al. Spatiospectral localization of global geopotential fields from the Gravity Recovery and Climate Experiment (GRACE) reveals the coseismic gravity change owing to the 2004 Sumatra‐Andaman earthquake , 2008 .
[51] D. Slepian. Some comments on Fourier analysis, uncertainty and modeling , 1983 .
[52] L. Knox,et al. Determination of inflationary observables by cosmic microwave background anisotropy experiments. , 1995, Physical review. D, Particles and fields.
[53] D. Slepian,et al. Eigenvalues associated with prolate spheroidal wave functions of zero order , 1965 .
[54] Philip Crotwell. Constructive Approximation on the Sphere , 2000 .
[55] H. Landau. The eigenvalue behavior of certain convolution equations , 1965 .
[56] Ingrid Daubechies,et al. Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.
[57] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[58] Clifford H. Thurber,et al. Parameter estimation and inverse problems , 2005 .
[59] Kung Yao,et al. Applications of Reproducing Kernel Hilbert Spaces-Bandlimited Signal Models , 1967, Inf. Control..
[60] D. Slepian,et al. On bandwidth , 1976, Proceedings of the IEEE.
[61] H. Pollak,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .
[62] Alfred Hanssen. Multidimensional multitaper spectral estimation , 1997, Signal Process..
[63] J. Tromp,et al. Theoretical Global Seismology , 1998 .
[64] M. Kendall. Theoretical Statistics , 1956, Nature.
[65] C. T. Mullis,et al. Quadratic Estimators of the Power Spectrum , 1989 .
[66] W. Menke. Geophysical data analysis , 1984 .
[67] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[68] F. Grünbaum. Eigenvectors of a Toeplitz Matrix: Discrete Version of the Prolate Spheroidal Wave Functions , 1981 .
[69] Nico Sneeuw,et al. The polar gap , 1997 .
[70] C. B. Netterfield,et al. MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.
[71] D. Varshalovich,et al. Quantum Theory of Angular Momentum , 1988 .
[72] Frederik J. Simons,et al. Minimum-Variance Multitaper Spectral Estimation on the Sphere , 2007, 1306.3254.
[73] F. Sansò,et al. Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere , 1999 .