Linear k-arboricities on trees

For a xed positive integer k, the linear k-arboricity lak(G) of a graph G is the minimum number ‘ such that the edge set E(G) can be partitioned into ‘ disjoint sets and that each induces a subgraph whose components are paths of lengths at most k. This paper studies linear k-arboricity from an algorithmic point of view. In particular, we present a linear-time algorithm to determine whether a tree T has lak(T)6m. ? 2000 Elsevier Science B.V. All rights reserved.

[1]  Frank Harary,et al.  Covering and packing in graphs IV: Linear arboricity , 1981, Networks.

[2]  François Jaeger Etude de quelques invariants et problèmes d'existence en théorie des graphes , 1976 .

[3]  Jean-Claude Bermond,et al.  On linear k-arboricity , 1984, Discret. Math..

[4]  Hung-Lin Fu,et al.  Decomposing graphs into forests of paths with size less than three , 1991, Australas. J Comb..

[5]  Filip Guldan Some results on linear arboricity , 1986 .

[6]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[7]  F. Harary,et al.  Covering and packing in graphs. III: Cyclic and acyclic invariants , 1980 .

[8]  Bernard Péroche,et al.  Some problems about linear arboricity , 1982, Discret. Math..

[9]  Bernard Péroche,et al.  Linear arboricity of digraphs , 1987, Networks.

[10]  秋山 仁,et al.  A Short Proof of the Linear Arboricity for Cubic Graphs , 1982 .

[11]  F. Harary COVERING AND PACKING IN GRAPHS, I. , 1970 .

[12]  G. Chang,et al.  THE PATH-PARTITION PROBLEM IN BIPARTITE DISTANCE-HEREDITARY GRAPHS , 1998 .

[13]  Jin Akiyama A status on the linear arboricity , 1980, Graph Theory and Algorithms.

[14]  Shaoqiang Zhang,et al.  THE LINEAR 2-ARBORICITY OF COMPLETE BIPARTITE GRAPHS , 1994 .

[15]  Pavel Tomasta Note on linear arboricity , 1982 .

[16]  Gerard J. Chang,et al.  ALGORITHMIC ASPECTS OF LINEAR k-ARBORICITY , 1999 .

[17]  Kuo-Ching Huang,et al.  On the linear k-arboricity of Kn and Kn, n , 2002, Discret. Math..

[18]  Hikoe Enomoto,et al.  The linear arboricity of some regular graphs , 1984, J. Graph Theory.

[19]  N. Alon The linear arboricity of graphs , 1988 .

[20]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[21]  B. Péroche,et al.  Complexité de l'arboricité linéaire d'un graphe , 1982 .

[22]  Filip Guldan,et al.  The linear arboricity of $10$-regular graphs , 1986 .

[23]  M. Habib,et al.  La k-Arboricité Linéaire Des Arbres , 1983 .