Action of perchlorate on the voltage dependent inactivation of excitation–contraction coupling in frog skeletal muscle fibres

[1]  G. Pizarro,et al.  Differential sensitivity to perchlorate and caffeine of tetracaine-resistant Ca2+ release in frog skeletal muscle , 2006, Journal of Muscle Research & Cell Motility.

[2]  F. Francini,et al.  L‐type Ca2+ channel and ryanodine receptor cross‐talk in frog skeletal muscle , 2004, The Journal of physiology.

[3]  M. Stern,et al.  Differential effects of voltage-dependent inactivation and local anesthetics on kinetic phases of Ca2+ release in frog skeletal muscle. , 2003, Biophysical journal.

[4]  J. Nakai,et al.  Multiple regions of RyR1 mediate functional and structural interactions with alpha(1S)-dihydropyridine receptors in skeletal muscle. , 2002, Biophysical journal.

[5]  J. Skepper,et al.  Differential effects of sarcoplasmic reticular Ca2+‐ATPase inhibition on charge movements and calcium transients in intact amphibian skeletal muscle fibres , 2002, The Journal of physiology.

[6]  Michael Fill,et al.  Ryanodine receptor calcium release channels. , 2002, Physiological reviews.

[7]  G. Pizarro,et al.  Effects of 2,3-butanedione monoxime on excitation–contraction coupling in frog twitch fibres , 1998, Journal of Muscle Research & Cell Motility.

[8]  C. L. Huang,et al.  The influence of perchlorate ions on complex charging transients in amphibian striated muscle , 1998, The Journal of physiology.

[9]  T. Oba Niflumic acid differentially modulates two types of skeletal ryanodine-sensitive Ca2+-release channels. , 1997, American journal of physiology. Cell physiology.

[10]  T. Oba Niflumic acid differentially modulates two types of skeletal ryanodine-sensitive Ca(2+)-release channels. , 1997, American Journal of Physiology.

[11]  E. Ríos,et al.  Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle , 1996, The Journal of general physiology.

[12]  W. Chandler,et al.  A slow component of intramembranous charge movement during sarcoplasmic reticulum calcium release in frog cut muscle fibers , 1996, The Journal of general physiology.

[13]  W. Chandler,et al.  Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers , 1995, The Journal of general physiology.

[14]  A. Williams,et al.  Chicken skeletal muscle ryanodine receptor isoforms: ion channel properties. , 1994, Biophysical journal.

[15]  E. Ríos,et al.  Perchlorate enhances transmission in skeletal muscle excitation- contraction coupling , 1993, The Journal of general physiology.

[16]  M. Karhanek,et al.  Effects of perchlorate on the molecules of excitation-contraction coupling of skeletal and cardiac muscle , 1993, The Journal of general physiology.

[17]  M. Karhanek,et al.  An allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle , 1993, The Journal of general physiology.

[18]  J. Mickelson,et al.  Perchlorate potentiation of excitation-contraction coupling in mammalian skeletal muscles. , 1993, The American journal of physiology.

[19]  A. Dulhunty,et al.  Actions of perchlorate ions on rat soleus muscle fibres. , 1992, The Journal of physiology.

[20]  W. Chandler,et al.  Q beta and Q gamma components of intramembranous charge movement in frog cut twitch fibers , 1991, The Journal of general physiology.

[21]  E. Ríos,et al.  Voltage sensor of excitation-contraction coupling in skeletal muscle. , 1991, Physiological reviews.

[22]  E. Ríos,et al.  The relationship between Q gamma and Ca release from the sarcoplasmic reticulum in skeletal muscle , 1991, The Journal of general physiology.

[23]  E. Stefani,et al.  Effect of the calcium buffer EGTA on the "hump" component of charge movement in skeletal muscle , 1991, The Journal of general physiology.

[24]  E. Stefani,et al.  Decay of the slow calcium current in twitch muscle fibers of the frog is influenced by intracellular EGTA , 1989, The Journal of general physiology.

[25]  R. Fitts,et al.  Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation‐contraction coupling. , 1988, The Journal of physiology.

[26]  E. Stefani,et al.  Effects of extracellular calcium on calcium movements of excitation‐contraction coupling in frog skeletal muscle fibres. , 1988, The Journal of physiology.

[27]  M. F. Schneider,et al.  Depletion of calcium from the sarcoplasmic reticulum during calcium release in frog skeletal muscle. , 1987, The Journal of physiology.

[28]  E. Ríos,et al.  Intramembrane charge movement in frog skeletal muscle fibres. Properties of charge 2. , 1987, The Journal of physiology.

[29]  E. Ríos,et al.  Time course of calcium release and removal in skeletal muscle fibers. , 1984, Biophysical journal.

[30]  H. Lüttgau,et al.  Perchlorate‐induced alterations in electrical and mechanical parameters of frog skeletal muscle fibres. , 1983, The Journal of physiology.

[31]  E. Ríos,et al.  Measurement and modification of free calcium transients in frog skeletal muscle fibres by a metallochromic indicator dye. , 1983, The Journal of physiology.

[32]  M. Fuxreiter,et al.  How perchlorate improves excitation-contraction coupling in skeletal muscle fibers. , 1983, Biophysical journal.

[33]  C. L. Huang Pharmacological separation of charge movement components in frog skeletal muscle , 1982, The Journal of physiology.

[34]  J. Foulks,et al.  The effects of temperature, local anaesthetics, pH, divalent cations, and group-specific reagents on repriming and repolarization-induced contractures in frog skeletal muscle. , 1979, Canadian journal of physiology and pharmacology.

[35]  J. Miller,et al.  Repolarization-induced reactivation of contracture tension in frog skeletal muscle. , 1973, Canadian journal of physiology and pharmacology.

[36]  N. Shirokova,et al.  Ca 2 + Release from the Sarcoplasmic Reticulum Compared in Amphibian and Mammalian Skeletal Muscle , 2003 .

[37]  S Ebashi,et al.  Excitation-contraction coupling. , 1976, Annual review of physiology.