Discovery and design of nuclear fuels

To facilitate the discovery and design of innovative nuclear fuels, multi-scale models and simulations are used to predict irradiation effects on properties such as thermal conductivity, oxygen diffusivity, and thermal expansion. The multi-scale approach is illustrated using results on ceramic fuels, with a focus on predictions of point defect concentration, stoichiometry, and phase stability. The high performance computer simulations include coupled heat transport, diffusion, and thermal expansion, and gas bubble formation and evolution in a fuel element consisting of UO2 fuel and metallic cladding. The second part of the paper is dedicated to a discussion of an international strategy for developing advanced, innovative nuclear fuels. Four initiatives are proposed to accelerate the discovery and design of new materials: (a) Create Institutes for Materials Discovery and Design, (b) Create an International Knowledgebase for experimental data, models (mathematical expressions), and simulations (codes), (c) Improve education and (d) Set up international collaborations.

[1]  M. Stan,et al.  Defects and oxygen diffusion in PuO2-x , 2005 .

[2]  Theodore M. Besmann,et al.  Chemical thermodynamic representations of 〈PuO2−x〉 and 〈U1−zPuzOw〉 , 1985 .

[3]  C. J. Ortiz,et al.  He diffusion in irradiated α-Fe : An ab-initio-based rate theory model , 2007 .

[4]  Yasuo Arai,et al.  Thermochemical and thermophysical properties of minor actinide compounds , 2009 .

[5]  Lyndon Edwards,et al.  Greater tolerance for nuclear materials. , 2008, Nature materials.

[6]  Marius Stan,et al.  MULTI-SCALE MODELS AND SIMULATIONS OF NUCLEAR FUELS , 2009 .

[7]  T. Ogawa,et al.  Development of Ceramics-coated Particle Fuel for Very High-Temperature Gas-Cooled Reactors , 2007 .

[8]  B. Alder,et al.  Scaling of atomistic fluid dynamics simulations. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  S. Lebègue,et al.  Many-body projector orbitals for electronic structure theory of strongly correlated electrons , 2005 .

[10]  B. Wirth How Does Radiation Damage Materials? , 2007, Science.

[11]  M. Coster,et al.  Microstructural analysis and modelling of intergranular swelling of an irradiated UO2 fuel treated at high temperature , 1998 .

[12]  P. Van Uffelen,et al.  First-principles modelling of defects in advanced nuclear fuels , 2007 .

[13]  P. E. Potter,et al.  The chemical constitution of the fuel-clad gap in oxide fuel pins for nuclear reactors , 1989 .

[14]  N. Bock,et al.  Improved model for the transit entropy of monatomic liquids. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  G. M. Stocks,et al.  Calculation of helium defect clustering properties in iron using a multi-scale approach , 2006 .

[16]  A. J. Arko,et al.  Dual nature of the 5f electrons in plutonium materials , 2006 .

[17]  M. Stan,et al.  Properties of plutonium and its alloys for use as fast reactor fuels , 2008 .

[18]  P. Van Uffelen,et al.  Implementing first principles calculations of defect migration in a fuel performance code for UN simulations , 2009 .

[19]  Timothy P. Lodge,et al.  A Unique Platform for Materials Design , 2008, Science.

[20]  M. Kurata,et al.  Phase relations in the quaternary Fe–Pu–U–Zr system , 2002 .

[21]  Philippe Garcia,et al.  A molecular dynamics study of radiation induced diffusion in uranium dioxide , 2009 .

[22]  E. Diegele,et al.  Modelling irradiation effects in fusion materials , 2007 .

[23]  Christine Guéneau,et al.  Thermodynamic modelling of the plutonium–oxygen system , 2008 .

[24]  S. Yip,et al.  Atomistic examination of the unit processes and vacancy-dislocation interaction in dislocation climb , 2009 .

[25]  P. Garcia,et al.  A study of xenon aggregates in uranium dioxide using X-ray absorption spectroscopy , 2006 .

[26]  Janne Wallenius,et al.  The EU programme for modelling radiation effects in fusion reactor materials: An overview of recent advances and future goals , 2009 .

[27]  Paul C. Millett,et al.  Phase field modeling of void nucleation and growth in irradiated metals , 2009 .

[28]  J. K. Fink,et al.  Thermophysical properties of uranium dioxide , 2000 .

[29]  K. D. Reeve Ceramics as nuclear reactor fuels , 1975 .

[30]  W. A. Oates,et al.  Vacancy thermodynamics for intermediate phases using the compound energy formalism , 2008 .

[31]  P. E. Potter Over forty years of 'Thermodynamics of Nuclear Materials' , 2009 .

[32]  S. Yamanaka,et al.  Phase behavior of PuO2−x with addition of 9% Am , 2007 .

[33]  Wolfgang Hoffelner,et al.  Modelling of advanced structural materials for GEN IV reactors , 2007 .

[34]  D. Knoll,et al.  A NEW NONLINEAR SOLUTION METHOD FOR PHASE-CHANGE PROBLEMS , 1999 .

[35]  Veena Tikare,et al.  Numerical simulation of solid state sintering , 2005 .

[36]  Krishna Rajan,et al.  Combinatorial Materials Sciences: Experimental Strategies for Accelerated Knowledge Discovery , 2008 .

[37]  M.K.Singh Rural Development Administration , 2006 .

[38]  T. Ogawa,et al.  Nuclear energy and waste management – pyroprocess for system symbiosis , 2007 .

[39]  C. Ronchi,et al.  Thermophysical properties affecting safety and performance of nuclear fuel , 2007 .

[40]  M. Samaras,et al.  Advanced Structural Materials and Cladding , 2009 .

[41]  Timothy C. Germann,et al.  369 Tflop/s molecular dynamics simulations on the Roadrunner general-purpose heterogeneous supercomputer , 2008, HiPC 2008.

[42]  Marc Barrachin,et al.  Progress in understanding fission-product behaviour in coated uranium-dioxide fuel particles , 2009 .

[43]  D. Manara,et al.  On the Present State of Investigation of Thermodynamic Properties of Solid and Liquid UO2+X , 2007 .

[44]  D. Butt,et al.  Synthesis of Dysprosium and Cerium Nitrides by a Mechanically Induced Gas–Solid Reaction , 2009 .

[45]  K. C. Kim,et al.  Oxygen diffusion in UO2−x , 1981 .

[46]  Juan C. Ramirez,et al.  Models and simulations of nuclear fuel materials properties , 2007 .

[47]  M. J. Fluss,et al.  Kinetic Monte Carlo simulations applied to irradiated materials: The effect of cascade damage in defect nucleation and growth , 2006 .

[48]  Juan C. Ramirez,et al.  Simulations of coupled heat transport, oxygen diffusion, and thermal expansion in UO2 nuclear fuel elements , 2009 .

[49]  Steven J. Zinkle,et al.  Kinetics of coarsening of helium bubbles during implantation and post-implantation annealing , 2007 .

[50]  Kenneth R. Muske,et al.  SOLVING A THERMAL REGENERATOR MODEL USING IMPLICIT NEWTON-KRYLOV METHODS , 2000 .

[51]  James I. Cole,et al.  Materials Challenges for Generation IV Nuclear Energy Systems , 2008 .

[52]  Krishna Rajan,et al.  Linking length scales via materials informatics , 2006 .

[53]  Per Högselius,et al.  Spent nuclear fuel policies in historical perspective: An international comparison , 2009 .

[54]  S. Yamanaka,et al.  Molecular Dynamics Studies of Americium-Containing Mixed Oxide Fuels , 2006 .

[55]  Jianguo Yu,et al.  Energetic recoils in UO2 simulated using five different potentials. , 2009, The Journal of chemical physics.

[56]  C. Rusch Nuclear fuel performance: Trends, remedies and challenges , 2008 .

[57]  Pedro Ortego,et al.  A review of nuclear fuel performance codes , 2005 .

[58]  James S. Tulenko,et al.  Thermal transport properties of uranium dioxide by molecular dynamics simulations , 2008 .

[59]  Blas P. Uberuaga,et al.  Role of di-interstitial clusters in oxygen transport in UO 2+x from first principles , 2009 .

[60]  S. Yamanaka,et al.  Chemical thermodynamic analysis of americium-containing UO2 and (U,Pu)O2 , 2007 .

[61]  Brian D. Wirth,et al.  Recent Developments in Irradiation-Resistant Steels , 2008 .

[62]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[63]  Marius Stan,et al.  Phase-field modeling of gas bubbles and thermal conductivity evolution in nuclear fuels , 2009 .

[64]  Wolfgang Hoffelner,et al.  Advanced materials modelling – E.U. perspectives , 2009 .

[65]  James S. Tulenko,et al.  Toward an Atomistically Informed Fuel Performance Code: Thermal Properties Using FRAPCON and Molecular Dynamics Simulation , 2009 .

[66]  M. Samaras,et al.  Modelling in nuclear energy environments , 2008 .

[67]  Mujid S. Kazimi Thorium fuel for nuclear energy , 2003 .

[68]  Veena Tikare,et al.  Multi‐Scale Study of Sintering: A Review , 2006 .

[69]  Koji Dozaki,et al.  In-Core SCC Growth Behavior of Type 304 Stainless Steel in BWR Simulated High-Temperature Water at JMTR , 2008 .

[70]  Theodore M. Besmann,et al.  Chemical thermodynamic representation of , 1985 .

[71]  Juan C. Ramirez,et al.  Simulations of heat and oxygen diffusion in UO2 nuclear fuel rods , 2006 .

[72]  M. Baskes,et al.  Helium bubble nucleation in bcc iron studied by kinetic Monte Carlo simulations , 2007 .

[73]  Christopher R. Weinberger,et al.  A non-singular continuum theory of dislocations , 2006 .

[74]  P. Garcia,et al.  In situ TEM study of temperature-induced fission product precipitation in UO2 , 2008 .

[75]  C. Degueldre,et al.  Introducing the nuclear material challenges , 2006 .

[76]  Mihai-Cosmin Marinica,et al.  Stability and mobility of self-interstitials and small interstitial clusters in α-iron: ab initio and empirical potential calculations , 2005 .

[77]  M. H. Kaye,et al.  Thermodynamic treatment of uranium dioxide based nuclear fuel , 2007 .

[78]  Glen Hansen,et al.  Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in UO2 nuclear fuel rods , 2009 .

[79]  J. Wallenius,et al.  Multiscale modelling of radiation damage and phase transformations: The challenge of FeCr alloys , 2008 .

[80]  J. Lamontagne,et al.  Fission Gas Bubbles Characterisation in Irradiated UO2 Fuel by SEM, EPMA and SIMS , 2006 .

[81]  James S. Tulenko,et al.  Energetics of intrinsic point defects in uranium dioxide from electronic-structure calculations , 2009 .

[82]  Zi-kui Liu,et al.  Thermostatics and kinetics of transformations in Pu-based alloys , 2006 .