An application of the SFIM technique to enhance the spatial resolution of spaceborne microwave radiometers

Microwave radiometers operating from space are one of the most promising tools for soil, snow and vegetation monitoring, due to the sensitivity of the measured emission to surface features and to the extended and recursive Earth observation. However, these potentials are partially hampered by the coarse spatial resolution, which is of the order of tens of kilometres, especially at the lower frequencies. This paper describes the results obtained by using a simple algorithm for enhancing the spatial resolution of the spaceborne microwave radiometer at C-band. The algorithm is based on the smoothing filter-based intensity modulation technique (SFIM), applied to the Advanced Microwave Remote Scanning Radiometer-Earth Observing System (AMSR-E) data collected from some reference targets, including the Amazon river basin, Lake Victoria in Africa and the Antarctic plateau.