Sensitivity of the Aerosol Indirect Effect to Subgrid Variability in the Cloud Parameterization of the GFDL Atmosphere General Circulation Model AM3

The recently developed GFDL Atmospheric Model version 3 (AM3), an atmospheric general circulation model (GCM), incorporates a prognostic treatment of cloud drop number to simulate the aerosol indirect effect. Since cloud drop activation depends on cloud-scale vertical velocities, which are not reproduced in present-day GCMs, additional assumptions on the subgrid variability are required to implement a local activation parameterization into a GCM. This paper describes the subgrid activation assumptions in AM3 and explores sensitivities by constructing alternate configurations. These alternate model configurations exhibit only small differences in their presentday climatology. However, the total anthropogenic radiative flux perturbation (RFP) between present-day and preindustrial conditions varies by 650% from the reference, because of a large difference in the magnitude of the aerosol indirect effect. The spread in RFP does not originate directly from the subgrid assumptions but indirectly through the cloud retuning necessary to maintain a realistic radiation balance. In particular, the paper shows a linear correlation between the choice of autoconversion threshold radius and the RFP. Climate sensitivity changes only minimally between the reference and alternate configurations. If implemented in a fully coupled model, these alternate configurations would therefore likely produce substantially different warming from preindustrial to present day.

[1]  Shian-Jiann Lin,et al.  Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. , 2009 .

[2]  Jeffrey T. Kiehl,et al.  Twentieth century climate model response and climate sensitivity , 2007 .

[3]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[4]  S. Klein,et al.  GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics , 2006 .

[5]  Leon D. Rotstayn,et al.  A physically based scheme for the treatment of stratiform clouds and precipitation in large‐scale models. I: Description and evaluation of the microphysical processes , 1997 .

[6]  Steven J. Ghan,et al.  A parameterization of aerosol activation: 1. Single aerosol type , 1998 .

[7]  V. Ramaswamy,et al.  A New Parameterization of Cloud Droplet Activation Applicable to General Circulation Models , 2006 .

[8]  H. Leighton,et al.  Aerosol–Cloud Interactions in a Mesoscale Model. Part I: Sensitivity to Activation and Collision–Coalescence , 2008 .

[9]  J. Penner,et al.  Aerosol indirect forcing in a global model with particle nucleation , 2008 .

[10]  Paul Ginoux,et al.  Modeling the interactions between aerosols and liquid water clouds with a self-consistent cloud scheme in a general circulation model , 2007 .

[11]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests , 2008 .

[12]  James G. Hudson,et al.  Evaluation of aerosol direct radiative forcing in MIRAGE , 2001 .

[13]  T. Nakajima,et al.  Importance of global aerosol modeling including secondary organic aerosol formed from monoterpene , 2008 .

[14]  B. Barkstrom,et al.  Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment , 1990 .

[15]  L. Ruby Leung,et al.  Prediction of cloud droplet number in a general , 1997 .

[16]  S. Twomey,et al.  The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration , 1959 .

[17]  J. Curry,et al.  Sensitivity of modeled arctic mixed‐phase stratocumulus to cloud condensation and ice nuclei over regionally varying surface conditions , 2008 .

[18]  Ralph A. Kahn,et al.  Why Hasn’t Earth Warmed as Much as Expected? , 2010 .

[19]  R. Stouffer,et al.  Assessment of Twentieth-Century Regional Surface Temperature Trends using the GFDL CM2 Coupled Models , 2006 .

[20]  M. Tiedtke,et al.  Representation of Clouds in Large-Scale Models , 1993 .

[21]  S. Klein,et al.  The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations , 2004 .

[22]  Darren L. Jackson,et al.  A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations , 1993 .

[23]  J. Dufresne,et al.  Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century , 2005 .

[24]  Olivier Boucher,et al.  The sulfate‐CCN‐cloud albedo effect , 1995 .

[25]  W. Cotton,et al.  Small-Scale and Mesoscale Variability in Cloudy Boundary Layers: Joint Probability Density Functions , 2002 .

[26]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[27]  S. Emori,et al.  Simulation of climate response to aerosol direct and indirect effects with aerosol transport‐radiation model , 2005 .

[28]  James O. Pinto,et al.  Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme , 2005 .

[29]  Ulrike Lohmann,et al.  Erratum: ``Prediction of the number of cloud droplets in the ECHAM GCM'' , 1999 .

[30]  P. Duynkerke,et al.  A Model for the Turbulent Structure of the Stratocumulus–Topped Atmospheric Boundary Layer , 1987 .

[31]  U. Lohmann,et al.  Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM , 1997 .

[32]  Xindi Bian,et al.  MIRAGE: Model description and evaluation of aerosols and trace gases , 2004 .

[33]  Leon D. Rotstayn,et al.  A smaller global estimate of the second indirect aerosol effect , 2005 .

[34]  Vincent E. Larson,et al.  Systematic Biases in the Microphysics and Thermodynamics of Numerical Models That Ignore Subgrid-Scale Variability , 2001 .

[35]  U. Lohmann,et al.  Importance of vertical velocity variations in the cloud droplet nucleation process of marine stratus clouds , 2005 .

[36]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[37]  S. Ghan,et al.  A parameterization of cloud droplet nucleation part I: single aerosol type , 1993 .

[38]  Andrew Gettelman,et al.  Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect , 2009 .

[39]  H. Barker,et al.  Neglect by GCMs of subgrid‐scale horizontal variations in cloud‐droplet effective radius: A diagnostic radiative analysis , 2004 .

[40]  J. Lamarque,et al.  Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data , 2009 .

[41]  Christopher S. Bretherton,et al.  Climate sensitivity and cloud response of a GCM with a superparameterization , 2006 .

[42]  Vincent E. Larson,et al.  A PDF-Based Model for Boundary Layer Clouds. Part I: Method and Model Description , 2002 .

[43]  F. Weng,et al.  Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I) , 1994 .

[44]  Leo J. Donner,et al.  A Cumulus Parameterization Including Mass Fluxes, Vertical Momentum Dynamics, and Mesoscale Effects , 1993 .

[45]  Andrew S. Jones,et al.  Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle , 2001 .

[46]  Leon D. Rotstayn,et al.  On the “tuning” of autoconversion parameterizations in climate models , 2000 .

[47]  J. Penner,et al.  Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations , 2002 .

[48]  Joyce E. Penner,et al.  An assessment of the radiative effects of anthropogenic sulfate , 1997 .

[49]  R. Charlson,et al.  Quantifying climate change - too rosy a picture? , 2007 .

[50]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[51]  S. Ghan,et al.  A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-Column and Global Results , 2008 .

[52]  R. Charlson,et al.  Global Indirect Radiative Forcing Caused by Aerosols: IPCC (2007) and Beyond , 2009 .

[53]  Christopher S. Bretherton,et al.  A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results , 2004 .

[54]  A. P. Siebesma,et al.  A Large Eddy Simulation Intercomparison Study of Shallow Cumulus Convection , 2003 .

[55]  Vincent E. Larson,et al.  Elucidating Model Inadequacies in a Cloud Parameterization by Use of an Ensemble-Based Calibration Framework , 2007 .

[56]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[57]  R. Knutti Why are climate models reproducing the observed global surface warming so well? , 2008 .

[58]  John F. B. Mitchell,et al.  Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models , 1990 .

[59]  S. Klein,et al.  Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model , 2005 .

[60]  George A. Isaac,et al.  Physical and chemical observations in marine stratus during the 1993 North Atlantic Regional Experiment: Factors controlling cloud droplet number concentrations , 1996 .

[61]  Ramaswamy,et al.  The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3 , 2011 .

[62]  J. Golaz,et al.  Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests , 2010 .

[63]  U. Lohmann Possible Aerosol Effects on Ice Clouds via Contact Nucleation , 2002 .

[64]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[65]  Brian M. Griffin,et al.  Multi-variate probability density functions with dynamics for cloud droplet activation in large-scale models: single column tests , 2010 .

[66]  Steven J. Ghan,et al.  Predicting cloud droplet number concentration in community atmosphere model (CAM)-Oslo , 2006 .

[67]  Andrew S. Jones,et al.  Global Indirect Radiative Forcing Caused by Aerosols , 2009 .

[68]  Johannes Quaas,et al.  Total aerosol effect: radiative forcing or radiative flux perturbation? , 2009 .

[69]  George Tselioudis,et al.  GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden , 2002 .

[70]  Howard W. Barker,et al.  Radiative sensitivities for cloud structural properties that are unresolved by conventional GCMs , 2005 .

[71]  S. Klein,et al.  Unresolved spatial variability and microphysical process rates in large‐scale models , 2000 .

[72]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[73]  W. Cotton,et al.  A diagnostic study of subgrid‐scale activation , 2005 .

[74]  U. Lohmann,et al.  Comparing Different Cloud Schemes of a Single Column Model by Using Mesoscale Forcing and Nudging Technique , 1999 .

[75]  L. Ruby Leung,et al.  A physically based estimate of radiative forcing by anthropogenic sulfate aerosol , 2001 .

[76]  U. Lohmann,et al.  What governs the spread in shortwave forcings in the transient IPCC AR4 models? , 2009 .

[77]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[78]  Z. X. Li,et al.  Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General Circulation Models , 1989, Science.

[79]  Willem A. Landman,et al.  Climate change 2007 : the physical science basis, S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M.M.B. Tignor, H. LeRoy Miller, Jr. and Z. Chen (Eds.) : book review , 2010 .

[80]  A. Nenes,et al.  Characteristic updrafts for computing distribution‐averaged cloud droplet number and stratocumulus cloud properties , 2010 .

[81]  Ernst Strüngmann Forum,et al.  Clouds in the perturbed climate system : their relationship to energy balance, atmospheric dynamics, and precipitation , 2009 .