Asthma severity, polymorphisms in 20p13 and their interaction with tobacco smoke exposure

We investigated the association between genetic variation in chromosomal region 20p13‐p12 (ADAM33 and flanking genes ATRN, GFRA4, SIGLEC1 and HSPA12B) and asthma. Amongst asthmatics, we then investigated the association between genetic variants and asthma severity. We evaluated the effect of environmental tobacco smoke (ETS) exposure in the context of genetic variants.

[1]  A. Zarrin,et al.  Evolutionarily Conserved Paired Immunoglobulin-like Receptor α (PILRα) Domain Mediates Its Interaction with Diverse Sialylated Ligands , 2012, The Journal of Biological Chemistry.

[2]  Carole Ober,et al.  The genetics of asthma and allergic disease: a 21st century perspective , 2011, Immunological reviews.

[3]  Carole Ober,et al.  Gene-environment interactions in human disease: nuisance or opportunity? , 2011, Trends in genetics : TIG.

[4]  S. Holgate ADAM metallopeptidase domain 33 (ADAM33): identification and role in airways disease. , 2010, Drug news & perspectives.

[5]  S. Holgate,et al.  Genetics of allergic disease. , 2010, The Journal of allergy and clinical immunology.

[6]  S. Stanojevic,et al.  Spirometry centile charts for young Caucasian children: the Asthma UK Collaborative Initiative. , 2009, American journal of respiratory and critical care medicine.

[7]  Christoph Lange,et al.  Assessing the reproducibility of asthma candidate gene associations, using genome-wide data. , 2009, American journal of respiratory and critical care medicine.

[8]  D. Postma,et al.  Smoke exposure interacts with ADAM33 polymorphisms in the development of lung function and hyperresponsiveness , 2009, Allergy.

[9]  Mathieu Lemire,et al.  Analyses of associations with asthma in four asthma population samples from Canada and Australia , 2009, Human Genetics.

[10]  David I. Wilson,et al.  The soluble form of a disintegrin and metalloprotease 33 promotes angiogenesis: implications for airway remodeling in asthma. , 2008, The Journal of allergy and clinical immunology.

[11]  J. D. Ribeiro,et al.  Associação dos polimorfismos dos genes TGF-beta1, CD14, IL-4, IL-4R e ADAM33 com a gravidade da asma em crianças e adolescentes , 2008 .

[12]  J. Ribeiro,et al.  Association of TGF-beta1, CD14, IL-4, IL-4R and ADAM33 gene polymorphisms with asthma severity in children and adolescents. , 2008, Jornal de pediatria.

[13]  J. Celedón,et al.  Comprehensive testing of positionally cloned asthma genes in two populations. , 2007, American journal of respiratory and critical care medicine.

[14]  Cleo C. van Diemen,et al.  A Disintegrin and Metalloprotease 33 polymorphisms and lung function decline in the general population , 2006, European Respiratory Review.

[15]  T. Hoffmann,et al.  Attractin, a dipeptidyl peptidase IV/CD26‐like enzyme, is expressed on human peripheral blood monocytes and potentially influences monocyte function , 2006, Journal of leukocyte biology.

[16]  S. Weiland,et al.  The role of polymorphisms in ADAM33, a disintegrin and metalloprotease 33, in childhood asthma and lung function in two German populations , 2006, Respiratory research.

[17]  D. Duffy,et al.  ADAM33 haplotypes are associated with asthma in a large Australian population , 2006, European Journal of Human Genetics.

[18]  Choon-Sik Park,et al.  A disintegrin and metalloproteinase 33 protein in patients with asthma: Relevance to airflow limitation. , 2006, American journal of respiratory and critical care medicine.

[19]  J. Hankinson,et al.  Interpretative strategies for lung function tests , 2005, European Respiratory Journal.

[20]  J. Hankinson,et al.  Standardisation of spirometry , 2005, European Respiratory Journal.

[21]  A. Woodcock,et al.  Polymorphisms in a disintegrin and metalloprotease 33 (ADAM33) predict impaired early-life lung function. , 2005, American journal of respiratory and critical care medicine.

[22]  I. Hall,et al.  Contribution of ADAM33 polymorphisms to the population risk of asthma , 2005, Thorax.

[23]  M. Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[24]  E. Silverman,et al.  ADAM33 polymorphisms and phenotype associations in childhood asthma. , 2004, The Journal of allergy and clinical immunology.

[25]  A. Woodcock,et al.  Tobacco smoke exposure, wheeze, and atopy , 2004, Pediatric pulmonology.

[26]  D. Postma,et al.  Polymorphisms of the ADAM33 gene are associated with accelerated lung function decline in asthma , 2004, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[27]  S. Holgate,et al.  The splicing and fate of ADAM33 transcripts in primary human airways fibroblasts. , 2004, American journal of respiratory cell and molecular biology.

[28]  D. Postma,et al.  Association of a disintegrin and metalloprotease 33 (ADAM33) gene with asthma in ethnically diverse populations. , 2003, The Journal of allergy and clinical immunology.

[29]  J. Breslow,et al.  Two Hsp70 family members expressed in atherosclerotic lesions , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Steuart Rorke,et al.  Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness , 2002, Nature.

[31]  E. Boerwinkle,et al.  High‐throughput multiplex SNP genotyping with MALDI‐TOF mass spectrometry: Practice, problems and promise , 2001, Human mutation.

[32]  L. Mulligan,et al.  A model for GFR alpha 4 function and a potential modifying role in multiple endocrine neoplasia 2. , 2005, Oncogene.

[33]  C. Carlson,et al.  Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. , 2004, American journal of human genetics.

[34]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .