Statistical learning theory and stochastic optimization
暂无分享,去创建一个
[1] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[2] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[3] Amiel Feinstein,et al. Information and information stability of random variables and processes , 1964 .
[4] Lucien Birgé. Approximation dans les espaces métriques et théorie de l'estimation , 1983 .
[5] A. Barron. Are Bayes Rules Consistent in Information , 1987 .
[6] O. Catoni. Rough Large Deviation Estimates for Simulated Annealing: Application to Exponential Schedules , 1992 .
[7] I. Daubechies,et al. Wavelets on the Interval and Fast Wavelet Transforms , 1993 .
[8] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[9] M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.
[10] A. Trouvé. Rough Large Deviation Estimates for the Optimal Convergence Speed Exponent of Generalized Simulated , 1994 .
[11] Neri Merhav,et al. A strong version of the redundancy-capacity theorem of universal coding , 1995, IEEE Trans. Inf. Theory.
[12] I. Johnstone,et al. Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .
[13] Neri Merhav,et al. Hierarchical universal coding , 1996, IEEE Trans. Inf. Theory.
[14] G. B. Arous,et al. Metastability of the Three Dimensional Ising Model on a Torus at Very Low Temperatures , 1996 .
[15] A. Trouvé. Cycle Decompositions and Simulated Annealing , 1996 .
[16] K. Marton. A measure concentration inequality for contracting markov chains , 1996 .
[17] A. Dembo,et al. TRANSPORTATION APPROACH TO SOME CONCEN- TRATION INEQUALITIES IN PRODUCT SPACES , 1996 .
[18] Laurent Alonso,et al. The three dimensional polyominoes of minimal area , 1996, Electron. J. Comb..
[19] K. Marton. Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .
[20] M. Ledoux,et al. Isoperimetry and Gaussian analysis , 1996 .
[21] I. Johnstone,et al. Density estimation by wavelet thresholding , 1996 .
[22] G. Lugosi,et al. Consistency of Data-driven Histogram Methods for Density Estimation and Classification , 1996 .
[23] A. Nobel. Histogram regression estimation using data-dependent partitions , 1996 .
[24] M. Nussbaum. Asymptotic Equivalence of Density Estimation and Gaussian White Noise , 1996 .
[25] Yuhong Yang. On Adaptive Function Estimation , 1997 .
[26] P. Massart,et al. From Model Selection to Adaptive Estimation , 1997 .
[27] I. Johnstone,et al. Universal Near Minimaxity of Wavelet Shrinkage , 1997 .
[28] M. Ledoux. On Talagrand's deviation inequalities for product measures , 1997 .
[29] L. Saloff-Coste,et al. Lectures on finite Markov chains , 1997 .
[30] O. Catoni. The Mixture Approach to Universal Model Selection , 1997 .
[31] A. Barron,et al. Asymptotic minimax regret for data compression, gambling and prediction , 1997, Proceedings of IEEE International Symposium on Information Theory.
[32] A. Tsybakov,et al. Wavelets, approximation, and statistical applications , 1998 .
[33] Paul-Marie Samson. Inegalites de concentration de la mesure pour des chaines de markov et des processus -melangeants , 1998 .
[34] Yannick Baraud. Sélection de modèles et estimation adaptative dans différents cadres de régression , 1998 .
[35] K. Marton. Measure concentration for a class of random processes , 1998 .
[36] P. Massart,et al. Minimum contrast estimators on sieves: exponential bounds and rates of convergence , 1998 .
[37] P. Massart,et al. Risk bounds for model selection via penalization , 1999 .
[38] Yuhong Yang,et al. Information-theoretic determination of minimax rates of convergence , 1999 .
[39] David A. McAllester. PAC-Bayesian model averaging , 1999, COLT '99.
[40] O. Catoni. Simulated annealing algorithms and Markov chains with rare transitions , 1999 .
[41] G. Blanchard. The “progressive mixture” estimator for regression trees , 1999 .
[42] M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities , 1999 .
[43] I. Johnstone,et al. ASYMPTOTIC MINIMAXITY OF WAVELET ESTIMATORS WITH SAMPLED DATA , 1999 .
[44] I. Johnstone. Wavelets and the theory of non-parametric function estimation , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[45] Paul-Marie Samson,et al. Concentration of measure inequalities for Markov chains and $\Phi$-mixing processes , 2000 .
[46] S. Boucheron,et al. A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.
[47] Arkadi Nemirovski,et al. Topics in Non-Parametric Statistics , 2000 .
[48] A. Juditsky,et al. Functional aggregation for nonparametric regression , 2000 .
[49] Olivier Catoni,et al. DATA COMPRESSION AND ADAPTIVE HISTOGRAMS , 2002 .
[50] P. Massart,et al. An Adaptive Compression Algorithm in Besov Spaces , 2000 .
[51] O. Catoni,et al. The loop erased exit path and the metastability of a biased vote process , 2000 .
[52] P. Massart,et al. About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .
[53] Yuhong Yang. Combining Different Procedures for Adaptive Regression , 2000, Journal of Multivariate Analysis.
[54] O. Catoni. Laplace transform estimates and deviation inequalities , 2001 .
[55] P. Massart,et al. Gaussian model selection , 2001 .
[56] Y. Baraud,et al. ADAPTIVE ESTIMATION IN AUTOREGRESSION OR β-MIXING REGRESSION VIA MODEL SELECTION By , 2001 .
[57] Jean-Philippe Vert,et al. Adaptive context trees and text clustering , 2001, IEEE Trans. Inf. Theory.
[58] Gilles Blanchard. Méthodes de mélange et d'agrégation d'estimateurs en reconnaissance de formes : Application aux arbres de décision , 2001 .
[59] Y. Baraud,et al. MODEL SELECTION FOR (AUTO-)REGRESSION WITH DEPENDENT DATA , 2001 .
[60] Jean-Philippe Vert. Text Categorization Using Adaptive Context Trees , 2001, CICLing.
[61] David A. McAllester. Some PAC-Bayesian Theorems , 1998, COLT' 98.
[62] A. Goldenshluger. On Spatial Adaptive Estimation of Nonparametric Regression , 2004 .