Exact solutions to the foam drainage equation by using the new generalized (G′/G)-expansion method

Abstract The new generalized ( G ′ / G )-expansion method is an interesting approach to find new and more general exact solutions to the nonlinear evolution equations (NLEEs) in mathematical physics and engineering. In this paper, the method is applied to construct exact solutions involving parameters for the foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions, the periodic wave and the rational function solutions are derived from exact solutions. These solutions might be imperative and significant for the explanation of some practical physical phenomena. It is shown that the method is an easy and advanced mathematical tool for solving NLEEs.

[1]  Perspectives on foam drainage and the influence of interfacial rheology , 2003 .

[2]  Khaled A. Gepreel,et al.  On the rational solitary wave solutions for the nonlinear Hirota–Satsuma coupled KdV system , 2006 .

[3]  Dazhao Lü,et al.  Jacobi elliptic function solutions for two variant Boussinesq equations , 2005 .

[4]  A. A. Karaballi,et al.  Sumudu transform fundamental properties investigations and applications. , 2006 .

[5]  Khaled A. Gepreel,et al.  On the solitary wave solutions for nonlinear Hirota–Satsuma coupled KdV of equations , 2004 .

[6]  Md. Nur Alam,et al.  Exact travelling wave solutions of the (3+1)-dimensional mKdV-ZK equation and the (1+1)-dimensional compound KdVB equation using the new approach of generalized G′/G$\left (\boldsymbol { {G^{\prime }/G}} \right )$-expansion method , 2014 .

[7]  Md. Nur Alam,et al.  Application of the exp (-∨(÷))-expansion Method to Find Exact Solutions for the Solitary Wave Equation in an Unmagnatized Dusty Plasma , 2014 .

[8]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[9]  M. A. Helal,et al.  The tanh method and Adomian decomposition method for solving the foam drainage equation , 2007, Appl. Math. Comput..

[10]  Jianlan Hu,et al.  Explicit solutions to three nonlinear physical models , 2001 .

[11]  Fethi Bin Muhammad Belgacem,et al.  Sumudu Transform Applications to Bessel Functions and Equations , 2010 .

[12]  Md. Nur Alam,et al.  A New (G'/G)-Expansion Method and Its Application to the Burgers Equation , 2013 .

[13]  Jianlan Hu,et al.  A new method for finding exact traveling wave solutions to nonlinear partial differential equations , 2001 .

[14]  P. Gennes The Physics Of Foams , 1999 .

[15]  Kwok Wing Chow,et al.  A class of exact, periodic solutions of nonlinear envelope equations , 1995 .

[16]  Ji-Huan He,et al.  Variational approach to foam drainage equation , 2011 .

[17]  Mingliang Wang,et al.  The (G' G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics , 2008 .

[18]  M. A. Sattar,et al.  Numerical simulation of slag foaming on bath smelting slag (CaO–SiO2–Al2O3–FeO) with population balance modeling , 2014 .

[19]  Mingliang Wang SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS , 1995 .

[20]  J.I.B. Wilson Essay Review-Scholarly froth and engineering skeletons , 2003 .

[21]  D. Langevin,et al.  Physicochemical approach to the theory of foam drainage , 2002 .

[22]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[23]  H. Stone,et al.  Dynamics of coarsening foams: accelerated and self-limiting drainage. , 2001, Physical review letters.

[24]  Md. Nur Alam,et al.  Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system , 2015 .

[25]  Mingliang Wang Exact solutions for a compound KdV-Burgers equation , 1996 .

[26]  E. Zayed,et al.  The ( $\frac{G'}{G})$ -expansion method and its applications to some nonlinear evolution equations in the mathematical physics , 2009 .

[27]  Muhammad Aslam Noor,et al.  Homotopy Perturbation Method for Solving Fourth-Order Boundary Value Problems , 2007 .

[28]  M. A. Sattar,et al.  Numerical simulation of creaming and foam formation in aerated liquid with population balance modeling , 2013 .

[29]  Muhammad Aslam Noor,et al.  Homotopy Perturbation Method for Solving Partial Differential Equations , 2009 .

[30]  Ahmet Bekir Application of the (G′G)-expansion method for nonlinear evolution equations , 2008 .

[31]  Md. Nur Alam,et al.  General traveling wave solutions of the strain wave equation in microstructured solids via the new approach of generalized (G′/G)-expansion method , 2014 .

[32]  M. Akbar TRAVELING AND NON-TRAVELING WAVE SOLUTIONS FOR FOAM DRAINAGE EQUATION , 2014 .

[33]  X. Feng,et al.  Exploratory Approach to Explicit Solution ofNonlinear Evolution Equations , 2000 .

[34]  Wen Hong,et al.  Investigation on Volume Scattering for Vegetation Parameter Estimation of Polarimetric SAR Interferometry , 2009 .

[35]  Robert K. Prud'homme,et al.  Foams: Theory: Measurements: Applications , 1995 .

[36]  Qi Wang,et al.  Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1 + 1)-dimensional dispersive long wave equation , 2005 .

[37]  Mingliang Wang,et al.  The periodic wave solutions for the Klein–Gordon–Schrödinger equations , 2003 .

[38]  Fethi Bin Muhammad Belgacem,et al.  Sumudu Applications to Maxwell's Equations , 2009 .

[39]  Farah Aini Abdullah,et al.  New approach of (G′/G)-expansion method and new approach of generalized (G′/G)-expansion method for nonlinear evolution equation , 2013 .

[40]  Xiangzheng Li,et al.  Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations , 2005 .

[41]  Wei Wang,et al.  A generalized (G′G)-expansion method for the mKdV equation with variable coefficients , 2008 .

[42]  Mohammad Taghi Darvishi,et al.  New solitary wave and periodic solutions of the foam drainage equation using the Exp-function method , 2009 .

[43]  広田 良吾,et al.  The direct method in soliton theory , 2004 .