Unsupervised scene analysis: A hidden Markov model approach

[1]  Ming-Ting Sun,et al.  Special Issue on Video Surveillance , 2008, IEEE Trans. Circuits Syst. Video Technol..

[2]  Chng Eng Siong,et al.  Foreground motion detection by difference-based spatial temporal entropy image , 2004, 2004 IEEE Region 10 Conference TENCON 2004..

[3]  Luc Van Gool,et al.  A Probabilistic Approach to Large Displacement Optical Flow and Occlusion Detection , 2004, ECCV Workshop SMVP.

[4]  M. Cristani,et al.  Multi-level background initialization using Hidden Markov Models , 2003, IWVS '03.

[5]  Shaogang Gong,et al.  Recognition of group activities using dynamic probabilistic networks , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[6]  Mário A. T. Figueiredo,et al.  Similarity-Based Clustering of Sequences Using Hidden Markov Models , 2003, MLDM.

[7]  Vladimir Pavlovic,et al.  Discovering clusters in motion time-series data , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[8]  Chris Stauffer,et al.  Estimating Tracking Sources and Sinks , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.

[9]  Andrew Zisserman,et al.  Computer vision applied to super resolution , 2003, IEEE Signal Process. Mag..

[10]  Mário A. T. Figueiredo,et al.  A sequential pruning strategy for the selection of the number of states in hidden Markov models , 2003, Pattern Recognit. Lett..

[11]  Hilary Buxton,et al.  Learning and understanding dynamic scene activity: a review , 2003, Image Vis. Comput..

[12]  B. Frey,et al.  Transformation-Invariant Clustering Using the EM Algorithm , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Manuele Bicego,et al.  Integrated region- and pixel-based approach to background modelling , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[14]  Konrad Tollmar,et al.  Activity maps for location-aware computing , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[15]  Shaogang Gong,et al.  On the semantics of visual behaviour, structured events and trajectories of human action , 2002, Image Vis. Comput..

[16]  Joydeep Ghosh,et al.  HMMs and Coupled HMMs for multi-channel EEG classification , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[17]  Manuele Bicego,et al.  A Hidden Markov Model-Based Approach to Sequential Data Clustering , 2002, SSPR/SPR.

[18]  Cen Li,et al.  Applying the Hidden Markov Model Methodology for Unsupervised Learning of Temporal Data , 2002 .

[19]  Christopher M. Bishop,et al.  Bayesian Image Super-Resolution , 2002, NIPS.

[20]  Shaogang Gong,et al.  Autonomous Visual Events Detection and Classification without Explicit Object-Centred Segmentation and Tracking , 2002, BMVC.

[21]  Shaogang Gong,et al.  Learning pixel-wise signal energy for understanding semantics , 2003, Image Vis. Comput..

[22]  Claus Bahlmann,et al.  Measuring HMM similarity with the Bayes probability of error and its application to online handwriting recognition , 2001, Proceedings of Sixth International Conference on Document Analysis and Recognition.

[23]  Agostino Dovier,et al.  Designing the Minimal Structure of Hidden Markov Model by Bisimulation , 2001, EMMCVPR.

[24]  Joachim M. Buhmann,et al.  Topology free hidden Markov models: application to background modeling , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[25]  Shaogang Gong,et al.  Continuous global evidence-based Bayesian modality fusion for simultaneous tracking of multiple objects , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[26]  David C. Hogg,et al.  Learning Variable-Length Markov Models of Behavior , 2001, Comput. Vis. Image Underst..

[27]  Olivier Cappé,et al.  Ten years of HMMs , 2001 .

[28]  James T. Kwok,et al.  Rival penalized competitive learning for model-based sequence clustering , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[29]  Takashi Matsuyama,et al.  Multiobject Behavior Recognition by Event Driven Selective Attention Method , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Milind R. Naphade,et al.  A probabilistic framework for semantic indexing and retrieval in video , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[32]  Takeo Kanade,et al.  Introduction to the Special Section on Video Surveillance , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Gautam Biswas,et al.  A Bayesian Approach to Temporal Data Clustering using Hidden Markov Models , 2000, ICML.

[34]  Andrew Blake,et al.  A Probabilistic Background Model for Tracking , 2000, ECCV.

[35]  K. Ramchandran,et al.  A factor graph framework for semantic indexing and retrieval in video , 2000, 2000 Proceedings Workshop on Content-based Access of Image and Video Libraries.

[36]  Takeo Kanade,et al.  Limits on super-resolution and how to break them , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[37]  Brendan J. Frey,et al.  Transformed hidden Markov models: estimating mixture models of images and inferring spatial transformations in video sequences , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[38]  Takeo Kanade,et al.  Hallucinating faces , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[39]  Stéphane Marchand-Maillet,et al.  Content-Based Video Retrieval: an Overview , 2000 .

[40]  Takeo Kanade,et al.  A System for Video Surveillance and Monitoring , 2000 .

[41]  Michael Elad,et al.  Super-Resolution Reconstruction of Image Sequences , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[43]  Michael Elad,et al.  Superresolution restoration of an image sequence: adaptive filtering approach , 1999, IEEE Trans. Image Process..

[44]  Alex Pentland,et al.  Action Reaction Learning: Automatic Visual Analysis and Synthesis of Interactive Behaviour , 1999, ICVS.

[45]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[46]  Matthew Brand,et al.  An Entropic Estimator for Structure Discovery , 1998, NIPS.

[47]  Alex Pentland,et al.  Graphical Models for Recognizing Human Interactions , 1998, NIPS.

[48]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[49]  David C. Hogg,et al.  Statistical Models of Object Interaction , 1998, Proceedings 1998 IEEE Workshop on Visual Surveillance.

[50]  Russell C. Hardie,et al.  Joint MAP registration and high-resolution image estimation using a sequence of undersampled images , 1997, IEEE Trans. Image Process..

[51]  James W. Davis,et al.  The representation and recognition of human movement using temporal templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[52]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[53]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[54]  Padhraic Smyth,et al.  Clustering Sequences with Hidden Markov Models , 1996, NIPS.

[55]  James W. Davis,et al.  An appearance-based representation of action , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[56]  Robert L. Stevenson,et al.  Extraction of high-resolution frames from video sequences , 1996, IEEE Trans. Image Process..

[57]  Peter Cheeseman,et al.  Super-Resolved Surface Reconstruction from Multiple Images , 1996 .

[58]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[59]  David C. Hogg,et al.  Learning the Distribution of Object Trajectories for Event Recognition , 1995, BMVC.

[60]  Andreas Stolcke,et al.  Hidden Markov Model} Induction by Bayesian Model Merging , 1992, NIPS.

[61]  Michal Irani,et al.  Improving resolution by image registration , 1991, CVGIP Graph. Model. Image Process..

[62]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[63]  L. R. Rabiner,et al.  A probabilistic distance measure for hidden Markov models , 1985, AT&T Technical Journal.

[64]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[65]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[66]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .