Realistic Image Rendition Using a Variable Exponent Functional Model for Retinex

The goal of realistic image rendition is to recover the acquired image under imperfect illuminant conditions, where non–uniform illumination may degrade image quality with high contrast and low SNR. In this paper, the assumption regarding illumination is modified and a variable exponent functional model for Retinex is proposed to remove non–uniform illumination and reduce halo artifacts. The theoretical derivation is provided and experimental results are presented to illustrate the effectiveness of the proposed model.

[1]  Zhibin Li,et al.  Variable exponent functionals in image restoration , 2010, Appl. Math. Comput..

[2]  Jeffrey A. Fessler,et al.  A convergence proof of the split Bregman method for regularized least-squares problems , 2014, ArXiv.

[3]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[4]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[5]  Alessandro Rizzi,et al.  A computational approach to color adaptation effects , 2000, Image Vis. Comput..

[6]  Ju Cheng Yang,et al.  Intensity Variation Normalization for Finger Vein Recognition Using Guided Filter Based Singe Scale Retinex , 2015, Sensors.

[7]  Xiaoqun Zhang,et al.  Retinex by Higher Order Total Variation L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document} Decomp , 2015, Journal of Mathematical Imaging and Vision.

[8]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[9]  S. Osher,et al.  A TV Bregman iterative model of Retinex theory , 2012 .

[10]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[11]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[12]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[13]  Shuhang Chen,et al.  Simultaneous Reconstruction and Segmentation of Dynamic PET via Low-Rank and Sparse Matrix Decomposition , 2015, IEEE Transactions on Biomedical Engineering.

[14]  John J. McCann,et al.  Retinex in Matlab , 2000, CIC.

[15]  B. Buttkus HOMOMORPHIC FILTERING — THEORY AND PRACTICE* , 1975 .

[16]  Yuli Fu,et al.  Split Bregman algorithms for sparse group Lasso with application to MRI reconstruction , 2015, Multidimens. Syst. Signal Process..

[17]  Michael Elad,et al.  A Variational Framework for Retinex , 2002, IS&T/SPIE Electronic Imaging.

[18]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[19]  N. Daw,et al.  Goldfish Retina: Organization for Simultaneous Color Contrast , 1967, Science.

[20]  Jean-Michel Morel,et al.  A PDE Formalization of Retinex Theory , 2010, IEEE Transactions on Image Processing.

[21]  Laurence Meylan,et al.  High dynamic range image rendering with a retinex-based adaptive filter , 2006, IEEE Transactions on Image Processing.

[22]  Chak-Kuen Wong,et al.  Total variation image restoration: numerical methods and extensions , 1997, Proceedings of International Conference on Image Processing.

[23]  Farhan A. Baqai,et al.  Analysis and extensions of the Frankle-McCann Retinex algorithm , 2004, J. Electronic Imaging.

[24]  Stanley Osher,et al.  Non-Local Retinex - A Unifying Framework and Beyond , 2015, SIAM J. Imaging Sci..

[25]  Bjørn Fredrik Nielsen,et al.  The split Bregman algorithm applied to PDE-constrained optimization problems with total variation regularization , 2016, Comput. Optim. Appl..

[26]  Aichi Chien,et al.  An L1-based variational model for Retinex theory and its application to medical images , 2011, CVPR 2011.

[27]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[28]  Michael K. Ng,et al.  A Total Variation Model for Retinex , 2011, SIAM J. Imaging Sci..

[29]  E H Land,et al.  An alternative technique for the computation of the designator in the retinex theory of color vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Stanley Osher,et al.  A unifying retinex model based on non-local differential operators , 2013, Electronic Imaging.

[31]  Tony Lindeberg,et al.  A computational theory of visual receptive fields , 2013, Biological Cybernetics.

[32]  Jean-Michel Morel,et al.  Multiscale Retinex , 2014, Image Process. Line.

[33]  John J. McCann,et al.  Lessons Learned from Mondrians Applied to Real Images and Color Gamuts , 1999, CIC.

[34]  Alessandro Rizzi,et al.  Mathematical definition and analysis of the retinex algorithm. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  Manuel Alonso,et al.  Receptive field , 2009, Scholarpedia.