A Millimeter-Wave CMOS Series-Doherty Power Amplifier With Post-Silicon Inter-Stage Passive Validation

This article presents a wideband series-Doherty power amplifier (SDPA) for millimeter-wave (mm-wave) fifth-generation (5G) applications. It features a compact two-step impedance inverting-based series-Doherty power combiner that provides broadband close-to-perfect power back-off (PBO) efficiency enhancement. The amplitude-to-amplitude (AM–AM)/amplitude-to-phase (AM–PM) performance of the load-modulated Doherty power amplifier for broadband operation is analyzed. We also devise a post-silicon inter-stage passive validation (PSIV) approach to evaluate the mm-wave chip prototype utilizing the embedded voltage root mean square detectors. The proposed SDPA is realized in a 40-nm bulk CMOS, and it delivers 20.4 dBm $P_{\text {SAT}}$ with 39.1%/34% PAE at 0-/6-dB PBO. Over a 23.5–30 GHz band, its PAE is >24% at 6-dB PBO. At 27 GHz, applying a “2 GHz 16-quadratic-amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM)” signal, the proposed SDPA generates 10.2 dBm average power with 18.9% average PAE. The average error vector magnitude is better than −24.5 dB without digital predistortion for a “400-MHz 64-QAM OFDM” signal while generating an average output power of 8.8 dBm with 15% PAE. The AM–AM/AM–PM of the realized SDPA is investigated by employing a “50-MHz 64-QAM OFDM” signal, validating our analysis and showing that the linearity limitation of DPAs is systematic and predictable. Utilizing the proposed PSIV approach, the frequency response of the input/inter-stage passive circuits is measured, indicating an excellent agreement with 3-D electromagnetic (EM) simulation results.

[1]  Dieuwert P. N. Mul,et al.  A Four-Way Series Doherty Digital Polar Transmitter at mm-Wave Frequencies , 2022, IEEE Journal of Solid-State Circuits.

[2]  Kenji Mukai,et al.  Bandwidth Optimization of Doherty Power Amplifier Based on Source Converters for 5G Mobile Handsets , 2022, IEEE Transactions on Microwave Theory and Techniques.

[3]  Patrick Reynaert,et al.  A Ka-Band Doherty-Like LMBA for High-Speed Wireless Communication in 28-nm CMOS , 2021, IEEE Journal of Solid-State Circuits.

[4]  Masoud Pashaeifar,et al.  A Millimeter-Wave Mutual-Coupling-Resilient Double-Quadrature Transmitter for 5G Applications , 2021, IEEE Journal of Solid-State Circuits.

[5]  Hua Wang,et al.  A Broadband Linear Ultra-Compact mm-Wave Power Amplifier With Distributed-Balun Output Network: Analysis and Design , 2021, IEEE Journal of Solid-State Circuits.

[6]  Hyun-Chul Park,et al.  A 24.5–29.5GHz Broadband Parallel-to-Series Combined Compact Doherty Power Amplifier in 28-nm Bulk CMOS for 5G Applications , 2021, 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[7]  Hua Wang,et al.  A High-Power Broadband Multi-Primary DAT-Based Doherty Power Amplifier for mm-Wave 5G Applications , 2021, IEEE Journal of Solid-State Circuits.

[8]  Hua Wang,et al.  Broadband Active Load-Modulation Power Amplification Using Coupled-Line Baluns: A Multifrequency Role-Exchange Coupler Doherty Amplifier Architecture , 2021, IEEE Journal of Solid-State Circuits.

[9]  Piet Wambacq,et al.  A 28-GHz SOI-CMOS Doherty Power Amplifier With a Compact Transformer-Based Output Combiner , 2021, IEEE Transactions on Microwave Theory and Techniques.

[10]  Hua Wang,et al.  A 26-to-60GHz Continuous Coupler-Doherty Linear Power Amplifier for Over-An-Octave Back-Off Efficiency Enhancement , 2021, 2021 IEEE International Solid- State Circuits Conference (ISSCC).

[11]  Masoud Pashaeifar,et al.  A 24-to-30GHz Double-Quadrature Direct-Upconversion Transmitter with Mutual-Coupling-Resilient Series-Doherty Balanced PA for 5G MIMO Arrays , 2021, 2021 IEEE International Solid- State Circuits Conference (ISSCC).

[12]  Hua Wang,et al.  A MM-Wave Current-Mode Inverse Outphasing Transmitter Front-End: A Circuit Duality of Conventional Voltage-Mode Outphasing , 2020, IEEE Journal of Solid-State Circuits.

[13]  K. Sengupta,et al.  Load Modulated Balanced mm-Wave CMOS PA with Integrated Linearity Enhancement for 5G applications , 2020, 2020 IEEE/MTT-S International Microwave Symposium (IMS).

[14]  A. Bevilacqua,et al.  A 28-GHz Stacked Power Amplifier with 20.7-dBm Output P1dB in 28-nm Bulk CMOS , 2020, IEEE Solid-State Circuits Letters.

[15]  James F. Buckwalter,et al.  A 30-GHz CMOS SOI Outphasing Power Amplifier With Current Mode Combining for High Backoff Efficiency and Constant Envelope Operation , 2020, IEEE Journal of Solid-State Circuits.

[16]  Peter M. Asbeck,et al.  A 28 GHz Single-Input Linear Chireix (SILC) Power Amplifier in 130 nm SiGe Technology , 2020, IEEE Journal of Solid-State Circuits.

[17]  Huy Thong Nguyen,et al.  A Coupler-Based Differential mm-Wave Doherty Power Amplifier With Impedance Inverting and Scaling Baluns , 2020, IEEE Journal of Solid-State Circuits.

[18]  W. Choi,et al.  High-Impedance, Broadband and Compact RMS Detectors for On-Chip Measurements of Millimeter Wave Voltages for Built-In Self-Testing and Debugging , 2020, 2020 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF).

[19]  Tso-Wei Li,et al.  A Super-Resolution Mixed-Signal Doherty Power Amplifier for Simultaneous Linearity and Efficiency Enhancement , 2019, IEEE Journal of Solid-State Circuits.

[20]  Song Hu,et al.  A 28-/37-/39-GHz Linear Doherty Power Amplifier in Silicon for 5G Applications , 2019, IEEE Journal of Solid-State Circuits.

[21]  Hua Wang,et al.  A 28-GHz Flip-Chip Packaged Chireix Transmitter With On-Antenna Outphasing Active Load Modulation , 2019, IEEE Journal of Solid-State Circuits.

[22]  Peter M. Asbeck,et al.  Power Amplifiers for mm-Wave 5G Applications: Technology Comparisons and CMOS-SOI Demonstration Circuits , 2019, IEEE Transactions on Microwave Theory and Techniques.

[23]  Slim Boumaiza,et al.  Linearity-Enhanced Doherty Power Amplifier Using Output Combining Network With Predefined AM–PM Characteristics , 2019, IEEE Transactions on Microwave Theory and Techniques.

[24]  Hua Wang,et al.  A Linear High-Efficiency Millimeter-Wave CMOS Doherty Radiator Leveraging Multi-Feed On-Antenna Active Load Modulation , 2018, IEEE Journal of Solid-State Circuits.

[25]  Huei Wang,et al.  Design of a 60-GHz High-Output Power Stacked- FET Power Amplifier Using Transformer-Based Voltage-Type Power Combining in 65-nm CMOS , 2018, IEEE Transactions on Microwave Theory and Techniques.

[26]  Chandrakanth Reddy Chappidi,et al.  Simultaneously Broadband and Back-Off Efficient mm-Wave PAs: A Multi-Port Network Synthesis Approach , 2018, IEEE Journal of Solid-State Circuits.

[27]  Ingrid Moerman,et al.  A Survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives , 2018, IEEE Communications Surveys & Tutorials.

[28]  Huei Wang,et al.  A K-Band Power Amplifier with 26-dBm Output Power and 34% PAE with Novel Inductance-based Neutralization in 90-nm CMOS , 2018, 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[29]  Marco Vigilante,et al.  A Wideband Class-AB Power Amplifier With 29–57-GHz AM–PM Compensation in 0.9-V 28-nm Bulk CMOS , 2018, IEEE Journal of Solid-State Circuits.

[30]  Narek Rostomyan,et al.  28 GHz Doherty Power Amplifier in CMOS SOI With 28% Back-Off PAE , 2018, IEEE Microwave and Wireless Components Letters.

[31]  Duixian Liu,et al.  A 28-GHz 32-Element TRX Phased-Array IC With Concurrent Dual-Polarized Operation and Orthogonal Phase and Gain Control for 5G Communications , 2017, IEEE Journal of Solid-State Circuits.

[32]  Nuutti Tervo,et al.  Analyzing 5G RF System Performance and Relation to Link Budget for Directive MIMO , 2017, IEEE Transactions on Antennas and Propagation.

[33]  Fredrik Tufvesson,et al.  5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice , 2017, IEEE Journal on Selected Areas in Communications.

[34]  Hossein Hashemi,et al.  Millimeter-wave power amplifiers & transmitters , 2017, 2017 IEEE Custom Integrated Circuits Conference (CICC).

[35]  Sherif Shakib,et al.  2.7 A wideband 28GHz power amplifier supporting 8×100MHz carrier aggregation for 5G in 40nm CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[36]  K. O. Kenneth,et al.  Compact Diode Connected MOSFET Detector for On-Chip Millimeter-Wave Voltage Measurements , 2016, IEEE Microwave and Wireless Components Letters.

[37]  Patrick Reynaert,et al.  A 40-nm CMOS E-Band 4-Way Power Amplifier With Neutralized Bootstrapped Cascode Amplifier and Optimum Passive Circuits , 2015, IEEE Transactions on Microwave Theory and Techniques.

[38]  Patrick Reynaert,et al.  Transformer-Based Doherty Power Amplifiers for mm-Wave Applications in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[39]  Franco Giannini,et al.  Effect of Load Modulation on Phase Distortion in Doherty Power Amplifiers , 2014, IEEE Microwave and Wireless Components Letters.

[40]  Patrick Reynaert,et al.  A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[41]  Peter M. Asbeck,et al.  Active Millimeter-Wave Phase-Shift Doherty Power Amplifier in 45-nm SOI CMOS , 2013, IEEE Journal of Solid-State Circuits.

[42]  Erik G. Larsson,et al.  Massive MIMO for next generation wireless systems , 2013, IEEE Communications Magazine.

[43]  Peter M. Asbeck,et al.  Analysis and Design of Stacked-FET Millimeter-Wave Power Amplifiers , 2013, IEEE Transactions on Microwave Theory and Techniques.

[44]  Patrick Reynaert,et al.  A 60-GHz Outphasing Transmitter in 40-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[45]  Hisashi Shichijo,et al.  Compact, High Impedance and Wide Bandwidth Detectors for Characterization of Millimeter Wave Performance , 2012, IEEE Journal of Solid-State Circuits.

[46]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[47]  J.R. Long,et al.  Monolithic transformers for silicon RF IC design , 2000, IEEE Journal of Solid-State Circuits.

[48]  W.H. Doherty,et al.  A New High Efficiency Power Amplifier for Modulated Waves , 1936, Proceedings of the Institute of Radio Engineers.

[49]  P. Asbeck,et al.  Millimeter-Wave Power Amplifier Integrated Circuits for High Dynamic Range Signals , 2021, IEEE Journal of Microwaves.