DO QUIESCENT AND ACTIVE GALAXIES HAVE DIFFERENT MBH–σ* RELATIONS?

To investigate the validity of the assumption that quiescent galaxies and active galaxies follow the same black hole mass (MBH)–stellar velocity dispersion (σ*) relation, as required for the calibration of MBH estimators for broad line active galactic nuclei (AGNs), we determine and compare the MBH–σ* relations, respectively, for quiescent and active galaxies. For the quiescent galaxy sample, composed of 72 dynamical MBH measurements, we update σ* for 28 galaxies using homogeneous H-band measurements that are corrected for galaxy rotation. For active galaxies, we collect 25 reverberation-mapped AGNs and improve σ* measurement for two objects. Combining the two samples, we determine the virial factor f, first by scaling the active galaxy sample to the MBH–σ* relation of quiescent galaxies, and second by simultaneously fitting the quiescent and active galaxy samples, as and , respectively. The MBH–σ* relation of active galaxies appears to be shallower than that of quiescent galaxies. However, the discrepancy is caused by a difference in the accessible MBH distribution at given σ*, primarily due to the difficulty of measuring reliable stellar velocity dispersion for the host galaxies of luminous AGNs. Accounting for the selection effects, we find that active and quiescent galaxies are consistent with following intrinsically the same MBH–σ* relation.

[1]  T. Treu,et al.  A LOCAL BASELINE OF THE BLACK HOLE MASS SCALING RELATIONS FOR ACTIVE GALAXIES. III. THE MBH–σ RELATION , 2014, 1409.4428.

[2]  D. Riechers,et al.  CALIBRATING STELLAR VELOCITY DISPERSIONS BASED ON SPATIALLY RESOLVED H-BAND SPECTRA FOR IMPROVING THE MBH–σ* RELATION , 2013, 1302.4742.

[3]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[4]  A. V. D. Wel,et al.  An over-massive black hole in the compact lenticular galaxy NGC 1277 , 2012, Nature.

[5]  X. Dai,et al.  A BAYESIAN MONTE CARLO ANALYSIS OF THE M–σ RELATION , 2012, 1208.3900.

[6]  T. Treu,et al.  A LOCAL BASELINE OF THE BLACK HOLE MASS SCALING RELATIONS FOR ACTIVE GALAXIES. II. MEASURING STELLAR VELOCITY DISPERSION IN ACTIVE GALAXIES , 2012 .

[7]  L. Ho,et al.  A UNIFORMLY SELECTED SAMPLE OF LOW-MASS BLACK HOLES IN SEYFERT 1 GALAXIES , 2012, 1206.3843.

[8]  Jeremy D. Murphy,et al.  DYNAMICAL MEASUREMENTS OF BLACK HOLE MASSES IN FOUR BRIGHTEST CLUSTER GALAXIES AT 100 Mpc , 2012, 1203.1620.

[9]  Tod R. Lauer,et al.  Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies , 2011, Nature.

[10]  T. Treu,et al.  THE LICK AGN MONITORING PROJECT: RECALIBRATING SINGLE-EPOCH VIRIAL BLACK HOLE MASS ESTIMATES , 2011, 1111.6604.

[11]  C. D. Laney,et al.  THE LICK AGN MONITORING PROJECT 2011: REVERBERATION MAPPING OF MARKARIAN 50 , 2011, 1111.0061.

[12]  J. Trump,et al.  SECULAR EVOLUTION AND A NON-EVOLVING BLACK-HOLE-TO-GALAXY MASS RATIO IN THE LAST 7 Gyr , 2011, 1109.4633.

[13]  L. Wisotzki,et al.  Selection effects in the black hole-bulge relation and its evolution , 2011, 1109.2787.

[14]  L. Ho,et al.  EXPLORING THE LOW-MASS END OF THE MBH–σ* RELATION WITH ACTIVE GALAXIES , 2011, 1106.6232.

[15]  T. Treu,et al.  THE MASS OF THE BLACK HOLE IN Arp 151 FROM BAYESIAN MODELING OF REVERBERATION MAPPING DATA , 2011, 1104.4794.

[16]  M. E. Cornell,et al.  Supermassive black holes do not correlate with galaxy disks or pseudobulges , 2011, Nature.

[17]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[18]  K. Gebhardt,et al.  EFFECT OF A DARK MATTER HALO ON THE DETERMINATION OF BLACK HOLE MASSES , 2010, 1011.5077.

[19]  T. Treu,et al.  THE LICK AGN MONITORING PROJECT: ALTERNATE ROUTES TO A BROAD-LINE REGION RADIUS , 2010, 1009.0532.

[20]  T. Treu,et al.  A LOCAL BASELINE OF THE BLACK HOLE MASS SCALING RELATIONS FOR ACTIVE GALAXIES. I. METHODOLOGY AND RESULTS OF PILOT STUDY , 2010, 1008.4602.

[21]  M. Reid,et al.  THE MEGAMASER COSMOLOGY PROJECT. III. ACCURATE MASSES OF SEVEN SUPERMASSIVE BLACK HOLES IN ACTIVE GALAXIES WITH CIRCUMNUCLEAR MEGAMASER DISKS , 2010, 1008.2146.

[22]  E. Athanassoula,et al.  An expanded Mbh–σ diagram, and a new calibration of active galactic nuclei masses , 2010, 1007.3834.

[23]  C. Peng,et al.  PRECISE BLACK HOLE MASSES FROM MEGAMASER DISKS: BLACK HOLE–BULGE RELATIONS AT LOW MASS , 2010, 1007.2851.

[24]  M. C. Bentz,et al.  REVERBERATION MAPPING MEASUREMENTS OF BLACK HOLE MASSES IN SIX LOCAL SEYFERT GALAXIES , 2010, 1006.4160.

[25]  T. Treu,et al.  THE LICK AGN MONITORING PROJECT: THE MBH–σ* RELATION FOR REVERBERATION-MAPPED ACTIVE GALAXIES , 2010, 1004.0252.

[26]  D. Batcheldor THE M•–σ* RELATION DERIVED FROM SPHERE OF INFLUENCE ARGUMENTS , 2010, 1002.1705.

[27]  A. Treves,et al.  The quasar relation through cosmic time – II. Evidence for evolution from z = 3 to the present age , 2009, 0911.2988.

[28]  Juntai Shen,et al.  THE SUPERMASSIVE BLACK HOLE AND DARK MATTER HALO OF NGC 4649 (M60) , 2009, 0910.4168.

[29]  Ralf Bender,et al.  Do black hole masses scale with classical bulge luminosities only? The case of the two composite pseudo-bulge galaxies NGC 3368 and NGC 3489 , 2009, 0912.2511.

[30]  J. Trump,et al.  ON THE COSMIC EVOLUTION OF THE SCALING RELATIONS BETWEEN BLACK HOLES AND THEIR HOST GALAXIES: BROAD-LINE ACTIVE GALACTIC NUCLEI IN THE zCOSMOS SURVEY , 2009, 0910.4970.

[31]  S. Leiden,et al.  Estimating black hole masses in triaxial galaxies , 2009, 0910.0844.

[32]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[33]  G. Kauffmann,et al.  The growth of supermassive black holes in pseudo-bulges, classical bulges and elliptical galaxies , 2008, 0811.1219.

[34]  B. Peterson,et al.  THE BLACK HOLE MASS–BULGE LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI FROM REVERBERATION MAPPING AND HUBBLE SPACE TELESCOPE IMAGING , 2008, 0812.2284.

[35]  P. Martini,et al.  First Stellar Velocity Dispersion Measurement of a Luminous Quasar Host with Gemini North Laser Guide Star Adaptive Optics , 2008, 0806.3271.

[36]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. III. The MBH-σ* Relation in the Last Six Billion Years , 2008, 0804.0235.

[37]  Alister W. Graham,et al.  Fundamental Planes and the Barless MBH-σ Relation for Supermassive Black Holes , 2008, 0801.1548.

[38]  Jian Hu,et al.  The black hole mass–stellar velocity dispersion correlation: bulges versus pseudo-bulges , 2008, 0801.1481.

[39]  M. Malkan,et al.  Circumnuclear Gas in Seyfert 1 Galaxies: Morphology, Kinematics, and Direct Measurement of Black Hole Masses , 2007, 0707.0611.

[40]  D. Berk,et al.  THE BLACK HOLE–BULGE RELATIONSHIP IN LUMINOUS BROAD-LINE ACTIVE GALACTIC NUCLEI AND HOST GALAXIES , 2007, 0712.1630.

[41]  T. Heckman,et al.  The Black Hole Mass of NGC 4151: Comparison of Reverberation Mapping and Stellar Dynamical Measurements , 2007, 0708.1196.

[42]  L. Ho,et al.  A New Sample of Low-Mass Black Holes in Active Galaxies , 2007, 0707.2617.

[43]  B. Peterson,et al.  The Mass of the Black Hole in the Seyfert 1 Galaxy NGC 4593 from Reverberation Mapping , 2006, astro-ph/0608406.

[44]  B. Peterson,et al.  A Reverberation-based Mass for the Central Black Hole in NGC 4151 , 2006, astro-ph/0607085.

[45]  R. Abuter,et al.  The Star-forming Torus and Stellar Dynamical Black Hole Mass in the Seyfert 1 Nucleus of NGC 3227* , 2006 .

[46]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. I. The MBH-σ Relation at z = 0.36 , 2006, astro-ph/0603648.

[47]  B. Peterson,et al.  Systematic effects in measurement of black hole masses by emission-line reverberation of active galactic nuclei: Eddington ratio and inclination , 2006, astro-ph/0603460.

[48]  J. Lehár,et al.  Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts , 2006, astro-ph/0603248.

[49]  P. Lira,et al.  Black Hole Masses and Host Galaxy Evolution of Radio-Loud Active Galactic Nuclei , 2005, astro-ph/0506316.

[50]  J. Moran,et al.  The Geometry of and Mass Accretion Rate through the Maser Accretion Disk in NGC 4258 , 2005, astro-ph/0504405.

[51]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[52]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004 .

[53]  James Howard,et al.  Mass producing an efficient NIR spectrograph , 2004, SPIE Astronomical Telescopes + Instrumentation.

[54]  K. Gebhardt,et al.  The Relationship Between Black Hole Mass and Velocity Dispersion in Seyfert 1 Galaxies , 2004, astro-ph/0407383.

[55]  Hebrew University,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004, astro-ph/0407297.

[56]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[57]  R. Nichol,et al.  The Ensemble Photometric Variability of ~25,000 Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0310336.

[58]  Heon-Young Chang,et al.  Current High Energy Emission Around Black Holes , 2002 .

[59]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[60]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. I. The Consistency of Black Hole Masses in Quiescent and Active Galaxies , 2001, astro-ph/0104380.

[61]  A. Koekemoer,et al.  Peering through the Dust: Evidence for a Supermassive Black Hole at the Nucleus of Centaurus A from VLT Infrared Spectroscopy , 2000, astro-ph/0011059.

[62]  Ralf Bender,et al.  Black Hole Mass Estimates from Reverberation Mapping and from Spatially Resolved Kinematics , 2000, astro-ph/0007123.

[63]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[64]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[65]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999, astro-ph/9911476.

[66]  A. Fabian THE OBSCURED GROWTH OF MASSIVE BLACK HOLES , 1999, astro-ph/9908064.

[67]  P. T. de Zeeuw,et al.  Improved Evidence for a Black Hole in M32 from HST/FOS Spectra. II. Axisymmetric Dynamical Models , 1997, astro-ph/9705081.

[68]  L. Ho,et al.  A Search for “Dwarf'' Seyfert Nuclei. III. Spectroscopic Parameters and Properties of the Host Galaxies , 1997, astro-ph/9704107.

[69]  H. Ford,et al.  Evidence for a Massive Black Hole in the Active Galaxy NGC 4261 from Hubble Space Telescope Images and Spectra , 1996 .

[70]  C. Nelson,et al.  Stellar and Gaseous Kinematics of Seyfert Galaxies. I. Spectroscopic Data , 1995 .

[71]  V. Marel,et al.  Velocity profiles of galaxies with claimed black holes – III. Observations and models for M87 , 1994 .

[72]  Bradley M. Peterson,et al.  REVERBERATION MAPPING OF ACTIVE GALACTIC NUCLEI , 1993 .

[73]  H. Mendelson,et al.  High-rate spectroscopic active galactic nucleus monitoring at the wise observatory. II: NGC 5548 , 1990 .