Zolotarev Quadrature Rules and Load Balancing for the FEAST Eigensolver
暂无分享,去创建一个
Ping Tak Peter Tang | Stefan Güttel | Gautier Viaud | Eric Polizzi | P. Tang | E. Polizzi | S. Güttel | Gautier Viaud
[1] Eric Polizzi,et al. Efficient modeling techniques for atomistic-based electronic density calculations , 2008 .
[2] Vladimir Druskin,et al. Optimal finite difference grids and rational approximations of the square root I. Elliptic problems , 2000 .
[3] Irene A. Stegun,et al. Pocketbook of mathematical functions , 1984 .
[4] Edoardo Di Napoli,et al. Efficient estimation of eigenvalue counts in an interval , 2013, Numer. Linear Algebra Appl..
[5] Eric Polizzi,et al. FEAST fundamental framework for electronic structure calculations: Reformulation and solution of the muffin-tin problem , 2011, Comput. Phys. Commun..
[6] T. Sakurai,et al. CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems , 2007 .
[7] Daniel Kressner,et al. An Error Analysis of Galerkin Projection Methods for Linear Systems with Tensor Product Structure , 2013, SIAM J. Numer. Anal..
[8] H.K. Kim. Filtering in the time and frequency domains , 1978, Proceedings of the IEEE.
[9] Tetsuya Sakurai,et al. CONTOUR INTEGRAL EIGENSOLVER FOR NON-HERMITIAN SYSTEMS: A RAYLEIGH-RITZ-TYPE APPROACH , 2010 .
[10] John Todd,et al. Applications of Transformation Theory: A Legacy from Zolotarev (1847–1878) , 1984 .
[11] J. N. Lyness,et al. A Numerical Method for Locating the Zeros of an Analytic Function , 1967 .
[12] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[13] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[14] Van Valkenburg,et al. Analog Filter Design , 1982 .
[15] P. Petrushev,et al. Rational Approximation of Real Functions , 1988 .
[16] Lukas Krämer,et al. On the parallel iterative solution of linear systems arising in the FEAST algorithm for computing inner eigenvalues , 2015, Parallel Comput..
[17] W. Cauer,et al. Ein Interpolationsproblem mit Funktionen mit positivem Realteil , 1934 .
[18] J. Dicapua. Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.
[19] Lloyd N. Trefethen,et al. Numerical Algorithms Based on Analytic Function Values at Roots of Unity , 2014, SIAM J. Numer. Anal..
[20] Eric Polizzi,et al. A High-Performance Numerical Library for Solving Eigenvalue Problems: FEAST Solver v2.0 User's Guide , 2012, ArXiv.
[21] Ben Silver,et al. Elements of the theory of elliptic functions , 1990 .
[22] VLADIMIR DRUSKIN,et al. Near-Optimal Perfectly Matched Layers for Indefinite Helmholtz Problems , 2015, SIAM Rev..
[23] T. J. Rivlin. The Chebyshev polynomials , 1974 .
[24] Lloyd N. Trefethen,et al. The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..
[25] Lukas Krämer,et al. The FEAST algorithm for large eigenvalue problems , 2011 .
[26] V. I. Lebedev,et al. On a Zolotarev problem in the method of alternating directions , 1977 .
[27] Tetsuya Sakurai,et al. Efficient Parameter Estimation and Implementation of a Contour Integral-Based Eigensolver , 2013 .
[28] Eric Polizzi,et al. A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.
[29] Mitsuhisa Sato,et al. A parallel method for large sparse generalized eigenvalue problems using a GridRPC system , 2008, Future Gener. Comput. Syst..
[30] Eugene L. Wachspress. The ADI minimax problem for complex spectra , 1990 .
[31] Tetsuya Sakurai,et al. A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method , 2008, J. Comput. Appl. Math..
[32] John Sabino,et al. Solution of Large-Scale Lyapunov Equations via the Block Modified Smith Methods , 2006 .
[33] Lukas Krämer,et al. Dissecting the FEAST algorithm for generalized eigenproblems , 2012, J. Comput. Appl. Math..
[34] V. I. Lebedev,et al. Variable time steps optimization of Lω -stable Crank–Nicolson method , 2005 .
[35] C. K. Yuen,et al. Digital Filters , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[36] S. Güttel. Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .
[37] T. Sakurai,et al. A projection method for generalized eigenvalue problems using numerical integration , 2003 .
[38] Ping Tak Peter Tang,et al. FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..
[39] E. Polizzi,et al. Non-linear eigensolver-based alternative to traditional SCF methods. , 2012, The Journal of chemical physics.