Population-based metaheuristics for continuous boundary-constrained dynamic multi-objective optimisation problems

Abstract Most real-world optimisation problems are dynamic in nature with more than one objective, where at least two of these objectives are in conflict with one another. This kind of problems is referred to as dynamic multi-objective optimisation problems (DMOOPs). Most research in multi-objective optimisation (MOO) have focussed on static MOO (SMOO) and dynamic single-objective optimisation. However, in recent years, algorithms were proposed to solve dynamic MOO (DMOO). This paper provides an overview of the algorithms that were proposed in the literature to solve DMOOPs. In addition, challenges, practical aspects and possible future research directions of DMOO are discussed.

[1]  Weihong Wang,et al.  Dynamic Multi-objective Optimization Algorithm Based on GEP and Virus Evolution , 2012 .

[2]  Jinhua Zheng,et al.  Achieving balance between proximity and diversity in multi-objective evolutionary algorithm , 2012, Inf. Sci..

[3]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[4]  Tapabrata Ray,et al.  A Memetic Algorithm for Dynamic Multiobjective Optimization , 2009 .

[5]  Andries Petrus Engelbrecht,et al.  Benchmarks for dynamic multi-objective optimisation , 2013, 2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE).

[6]  Bin Li,et al.  Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment , 2009, 2009 IEEE Congress on Evolutionary Computation.

[7]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[8]  Julio Ortega Lopera,et al.  A single front genetic algorithm for parallel multi-objective optimization in dynamic environments , 2009, Neurocomputing.

[9]  Jürgen Branke,et al.  Optimization in Dynamic Environments , 2002 .

[10]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[11]  Kalyanmoy Deb,et al.  Dynamic Multi-objective Optimization and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-thermal Power Scheduling , 2007, EMO.

[12]  Kay Chen Tan,et al.  A distributed Cooperative coevolutionary algorithm for multiobjective optimization , 2006, IEEE Transactions on Evolutionary Computation.

[13]  Li Bin FH-MOEA:multi-objective evolutionary algorithm based-on fast hyper-volume contribution approach , 2008 .

[14]  Kay Chen Tan,et al.  A Coevolutionary Paradigm for Dynamic Multi-Objective Optimization , 2009 .

[15]  Alireza Rahimi-Vahed,et al.  A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly line sequencing problem , 2007, Comput. Ind. Eng..

[16]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[17]  K. Maalawi Special Issues on Design Optimization of Wind Turbine Structures , 2011 .

[18]  Peter A. N. Bosman,et al.  Evolutionary Multiobjective Optimization for Dynamic Hospital Resource Management , 2009, EMO.

[19]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[20]  FarinaM.,et al.  Dynamic multiobjective optimization problems , 2004 .

[21]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[22]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[23]  Zhuhong Zhang,et al.  Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control , 2008, Appl. Soft Comput..

[24]  Candida Ferreira Gene expression programming , 2006 .

[25]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[26]  Kay Chen Tan,et al.  A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment , 2010, Memetic Comput..

[27]  Andries Petrus Engelbrecht,et al.  Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[28]  Yuping Wang,et al.  New Evolutionary Algorithm for Dynamic Multiobjective Optimization Problems , 2006, ICNC.

[29]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[30]  Q. Henry Wu,et al.  Bacterial Foraging Algorithm for Optimal Power Flow in Dynamic Environments , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[32]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[33]  ZitzlerE.,et al.  Multiobjective evolutionary algorithms , 1999 .

[34]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[35]  Wenhua Zeng,et al.  A fast evolutionary algorithm for dynamic bi-objective optimization problems , 2012, 2012 7th International Conference on Computer Science & Education (ICCSE).

[36]  Qingfu Zhang,et al.  Prediction-Based Population Re-initialization for Evolutionary Dynamic Multi-objective Optimization , 2007, EMO.

[37]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[38]  Julio Ortega Lopera,et al.  Approaching Dynamic Multi-Objective Optimization Problems by Using Parallel Evolutionary Algorithms , 2010, Advances in Multi-Objective Nature Inspired Computing.

[39]  F. Burnet The clonal selection theory of acquired immunity , 1959 .

[40]  David Wallace,et al.  Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach , 2006, GECCO.

[41]  Qingfu Zhang,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of , 2022 .

[42]  Tapabrata Ray,et al.  Development of a memetic algorithm for Dynamic Multi-Objective Optimization and its applications for online neural network modeling of UAVs , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[43]  Andries Petrus Engelbrecht,et al.  Archive management for dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[44]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[45]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[46]  Raimo P. Hämäläinen,et al.  Dynamic multi-objective heating optimization , 2002, Eur. J. Oper. Res..

[47]  Andrew Y. C. Nee,et al.  An improved Intelligent Water Drops algorithm for achieving optimal job-shop scheduling solutions , 2012 .

[48]  Andries Petrus Engelbrecht,et al.  Performance measures for dynamic multi-objective optimisation algorithms , 2013, Inf. Sci..

[49]  Bojin Zheng,et al.  A New Dynamic Multi-objective Optimization Evolutionary Algorithm , 2007, Third International Conference on Natural Computation (ICNC 2007).

[50]  Tapabrata Ray,et al.  Memetic algorithm for dynamic bi-objective optimization problems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[51]  E. Hughes Multiple single objective Pareto sampling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[52]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[53]  Zikrija Avdagic,et al.  Evolutionary Approach to Solving Non-stationary Dynamic Multi-Objective Problems , 2009, Foundations of Computational Intelligence.

[54]  Andries Petrus Engelbrecht,et al.  Benchmarks for dynamic multi-objective optimisation algorithms , 2014, CSUR.

[55]  Bin Li,et al.  Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization , 2010, Memetic Comput..

[56]  Cheng-Liang Chen,et al.  Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices , 2004, Comput. Chem. Eng..

[57]  Il Hong Suh,et al.  Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants , 2011, Inf. Sci..

[58]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[59]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[60]  Xiaodong Li,et al.  Better Spread and Convergence: Particle Swarm Multiobjective Optimization Using the Maximin Fitness Function , 2004, GECCO.

[61]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[62]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[63]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[64]  Lin Li,et al.  Quantum immune clonal coevolutionary algorithm for dynamic multiobjective optimization , 2014, Soft Comput..

[65]  KarabogaDervis,et al.  A powerful and efficient algorithm for numerical function optimization , 2007 .

[66]  Gary B. Lamont,et al.  Multiobjective optimization with messy genetic algorithms , 2000, SAC '00.

[67]  Yangyang Li,et al.  An improved cooperative quantum-behaved particle swarm optimization , 2012, Soft Computing.

[68]  Michael Kirley,et al.  A Pareto following variation operator for evolutionary dynamic multi-objective optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[69]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[70]  Rajkumar Buyya,et al.  A pareto following variation operator for fast-converging multiobjective evolutionary algorithms , 2008, GECCO '08.

[71]  Hugo de Garis,et al.  A Dynamic Multi-Objective Evolutionary Algorithm Based on an Orthogonal Design , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[72]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[73]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[74]  C SchankRoger,et al.  Dynamic Memory: A Theory of Reminding and Learning in Computers and People , 1983 .

[75]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[76]  Yuping Wang,et al.  An evolutionary algorithm for dynamic multi-objective optimization , 2008, Appl. Math. Comput..

[77]  Raimo P. Hämäläinen,et al.  A Dynamic Interval Goal Programming Approach to the Regulation of a Lake-River System , 2001 .

[78]  Marde Helbig,et al.  Solving dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation , 2012 .

[79]  Aluizio F. R. Araújo,et al.  Generalized immigration schemes for dynamic evolutionary multiobjective optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[80]  Paolo Amato,et al.  An ALife-Inspired Evolutionary Algorithm for Dynamic Multiobjective Optimization Problems , 2005 .

[81]  Bernhard Sendhoff,et al.  Constructing Dynamic Optimization Test Problems Using the Multi-objective Optimization Concept , 2004, EvoWorkshops.

[82]  Sanyou Zeng,et al.  Twisted Helical Antenna for Satellite-Mobile Handset Using Dynamic Multi-objective Self-adapting Differential Evolution Algorithm , 2012, ISICA.

[83]  Carlos Cruz,et al.  Optimization in dynamic environments: a survey on problems, methods and measures , 2011, Soft Comput..

[84]  Tianyou Chai,et al.  hybrid evolutionary multiobjective optimization strategy for the dynamic ower supply problem in magnesia grain manufacturing , 2013 .

[85]  Chun-an Liu New Dynamic Multiobjective Evolutionary Algorithm with Core Estimation of Distribution , 2010, 2010 International Conference on Electrical and Control Engineering.

[86]  Andries P. Engelbrecht,et al.  Analysing the performance of dynamic multi-objective optimisation algorithms , 2013, 2013 IEEE Congress on Evolutionary Computation.

[87]  Cândida Ferreira,et al.  Gene Expression Programming: A New Adaptive Algorithm for Solving Problems , 2001, Complex Syst..

[88]  Julio Ortega Lopera,et al.  Parallel Processing for Multi-objective Optimization in Dynamic Environments , 2007, 2007 IEEE International Parallel and Distributed Processing Symposium.

[89]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[90]  Toshio Fukuda,et al.  Virus-evolutionary genetic algorithm for a self-organizing manufacturing system , 1996 .

[91]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[92]  Enrique Alba,et al.  AbYSS: Adapting Scatter Search to Multiobjective Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[93]  Andries Petrus Engelbrecht,et al.  Analyses of guide update approaches for vector evaluated particle swarm optimisation on dynamic multi-objective optimisation problems , 2012, 2012 IEEE Congress on Evolutionary Computation.

[94]  Michael Schreckenberg,et al.  A dynamic route guidance system based on real traffic data , 2001, Eur. J. Oper. Res..

[95]  S. Zein-Sabatto,et al.  Dynamic multiobjective optimization of war resource allocation using adaptive genetic algorithms , 2001, Proceedings. IEEE SoutheastCon 2001 (Cat. No.01CH37208).

[96]  Reza Akbari,et al.  A multi-objective Artificial Bee Colony for optimizing multi-objective problems , 2010, 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE).

[97]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[98]  Yuping Wang,et al.  U-measure: a quality measure for multiobjective programming , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[99]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[100]  Kay Chen Tan,et al.  An investigation on evolutionary gradient search for multi-objective optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[101]  Fang Liu,et al.  A sphere-dominance based preference immune-inspired algorithm for dynamic multi-objective optimization , 2010, GECCO '10.

[102]  DebKalyanmoy Multi-objective genetic algorithms , 1999 .

[103]  Kevin E Lansey,et al.  Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm , 2003 .

[104]  Andries Petrus Engelbrecht,et al.  Dynamic Multi-objective Optimisation Using PSO , 2010, Multi-Objective Swarm Intelligent System.

[105]  Irem Ozkarahan,et al.  COLLABORATIVE PRODUCTION-DISTRIBUTION PLANNING IN SUPPLY CHAIN: A FUZZY GOAL PROGRAMMING APPROACH , 2008 .

[106]  Hamed Shah-Hosseini,et al.  Problem solving by intelligent water drops , 2007, 2007 IEEE Congress on Evolutionary Computation.

[107]  Xi Chen,et al.  Using Diversity as an Additional-objective in Dynamic Multi-objective Optimization Algorithms , 2009, 2009 Second International Symposium on Electronic Commerce and Security.

[108]  Francisco de Toro,et al.  Comparison of Frameworks for Parallel Multiobjective Evolutionary Optimization in Dynamic Problems , 2012, Parallel Architectures and Bioinspired Algorithms.

[109]  Mohammad Reza Meybodi,et al.  Speciation based firefly algorithm for optimization in dynamic environments , 2012 .

[110]  Helen G. Cobb,et al.  An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments , 1990 .

[111]  Rajkumar Roy,et al.  Dynamic multi-objective optimisation for machining gradient materials , 2008 .

[112]  A. Carlisle,et al.  Tracking changing extrema with adaptive particle swarm optimizer , 2002, Proceedings of the 5th Biannual World Automation Congress.

[113]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[114]  Maoguo Gong,et al.  Clonal Selection Algorithm for Dynamic Multiobjective Optimization , 2005, CIS.

[115]  Andries Petrus Engelbrecht,et al.  Issues with performance measures for dynamic multi-objective optimisation , 2013, 2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE).

[116]  Steven Guan,et al.  Evolving Dynamic Multi-Objective Optimization Problems with Objective Replacement , 2005, Artificial Intelligence Review.

[117]  Qingfu Zhang,et al.  A Population Prediction Strategy for Evolutionary Dynamic Multiobjective Optimization , 2014, IEEE Transactions on Cybernetics.

[118]  Hartmut Schmeck,et al.  Designing evolutionary algorithms for dynamic optimization problems , 2003 .

[119]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.