A Statistical Test for Probabilistic Fairness

Algorithms are now routinely used to make consequential decisions that affect human lives. Examples include college admissions, medical interventions or law enforcement. While algorithms empower us to harness all information hidden in vast amounts of data, they may inadvertently amplify existing biases in the available datasets. This concern has sparked increasing interest in fair machine learning, which aims to quantify and mitigate algorithmic discrimination. Indeed, machine learning models should undergo intensive tests to detect algorithmic biases before being deployed at scale. In this paper, we use ideas from the theory of optimal transport to propose a statistical hypothesis test for detecting unfair classifiers. Leveraging the geometry of the feature space, the test statistic quantifies the distance of the empirical distribution supported on the test samples to the manifold of distributions that render a pre-trained classifier fair. We develop a rigorous hypothesis testing mechanism for assessing the probabilistic fairness of any pre-trained logistic classifier, and we show both theoretically as well as empirically that the proposed test is asymptotically correct. In addition, the proposed framework offers interpretability by identifying the most favorable perturbation of the data so that the given classifier becomes fair.

[1]  Krishna P. Gummadi,et al.  The Case for Process Fairness in Learning: Feature Selection for Fair Decision Making , 2016 .

[2]  Dinh Q. Phung,et al.  Multilevel Clustering via Wasserstein Means , 2017, ICML.

[3]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[4]  Toniann Pitassi,et al.  Fairness through awareness , 2011, ITCS '12.

[5]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[6]  David J. Kriegman,et al.  Image to Image Translation for Domain Adaptation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[7]  Leonidas J. Guibas,et al.  Earth mover's distances on discrete surfaces , 2014, ACM Trans. Graph..

[8]  Krishna P. Gummadi,et al.  Fairness Constraints: Mechanisms for Fair Classification , 2015, AISTATS.

[9]  Martin Wattenberg,et al.  The What-If Tool: Interactive Probing of Machine Learning Models , 2019, IEEE Transactions on Visualization and Computer Graphics.

[10]  Alexander Gasnikov,et al.  Computational Optimal Transport: Complexity by Accelerated Gradient Descent Is Better Than by Sinkhorn's Algorithm , 2018, ICML.

[11]  Rayid Ghani,et al.  Aequitas: A Bias and Fairness Audit Toolkit , 2018, ArXiv.

[12]  Alexandra Chouldechova,et al.  Fair prediction with disparate impact: A study of bias in recidivism prediction instruments , 2016, Big Data.

[13]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[14]  Gustavo K. Rohde,et al.  Transport-based single frame super resolution of very low resolution face images , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Alexandra Chouldechova,et al.  Does mitigating ML's impact disparity require treatment disparity? , 2017, NeurIPS.

[16]  Erez Shmueli,et al.  Algorithmic Fairness , 2020, ArXiv.

[17]  Jon M. Kleinberg,et al.  On Fairness and Calibration , 2017, NIPS.

[18]  Gabriel Peyré,et al.  Fast Dictionary Learning with a Smoothed Wasserstein Loss , 2016, AISTATS.

[19]  Roxana Geambasu,et al.  FairTest: Discovering Unwarranted Associations in Data-Driven Applications , 2015, 2017 IEEE European Symposium on Security and Privacy (EuroS&P).

[20]  Peter Szolovits,et al.  Genetic Misdiagnoses and the Potential for Health Disparities. , 2016, The New England journal of medicine.

[21]  Xi Chen,et al.  Wasserstein Distributional Robustness and Regularization in Statistical Learning , 2017, ArXiv.

[22]  Yongpei Guan,et al.  Data-driven risk-averse stochastic optimization with Wasserstein metric , 2018, Oper. Res. Lett..

[23]  Avi Feller,et al.  Algorithmic Decision Making and the Cost of Fairness , 2017, KDD.

[24]  Michael Werman,et al.  Fast and robust Earth Mover's Distances , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[25]  Kinjal Basu,et al.  Evaluating Fairness Using Permutation Tests , 2020, KDD.

[26]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[27]  Gustavo K. Rohde,et al.  Optimal Mass Transport: Signal processing and machine-learning applications , 2017, IEEE Signal Processing Magazine.

[28]  Yann Gousseau,et al.  Wasserstein Loss for Image Synthesis and Restoration , 2016, SIAM J. Imaging Sci..

[29]  Ankur Taly,et al.  Counterfactual Fairness in Text Classification through Robustness , 2018, AIES.

[30]  Andrew D. Selbst,et al.  Big Data's Disparate Impact , 2016 .

[31]  Toon Calders,et al.  Three naive Bayes approaches for discrimination-free classification , 2010, Data Mining and Knowledge Discovery.

[32]  Marco Cuturi,et al.  Computational Optimal Transport , 2019 .

[33]  Nicolas Courty,et al.  Wasserstein discriminant analysis , 2016, Machine Learning.

[34]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[35]  Xiaojie Mao,et al.  Assessing algorithmic fairness with unobserved protected class using data combination , 2019, FAT*.

[36]  X. Nguyen Convergence of latent mixing measures in finite and infinite mixture models , 2011, 1109.3250.

[37]  Jean-Michel Loubes,et al.  Obtaining Fairness using Optimal Transport Theory , 2018, ICML.

[38]  Timnit Gebru,et al.  Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification , 2018, FAT.

[39]  M. Kearns,et al.  Fairness in Criminal Justice Risk Assessments: The State of the Art , 2017, Sociological Methods & Research.

[40]  Gustavo K. Rohde,et al.  A Transportation Lp Distance for Signal Analysis , 2016, ArXiv.

[41]  Gustavo K. Rohde,et al.  A Transportation Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Distance for Signal Analysis , 2016, Journal of Mathematical Imaging and Vision.

[42]  Julien Rabin,et al.  Convex Histogram-Based Joint Image Segmentation with Regularized Optimal Transport Cost , 2016, Journal of Mathematical Imaging and Vision.

[43]  Marco Cuturi,et al.  Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric , 2015, NIPS.

[44]  Kristina Lerman,et al.  A Survey on Bias and Fairness in Machine Learning , 2019, ACM Comput. Surv..

[45]  Viet Anh Nguyen,et al.  Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning , 2019, Operations Research & Management Science in the Age of Analytics.

[46]  Viet Anh Nguyen,et al.  A Distributionally Robust Approach to Fair Classification , 2020, ArXiv.

[47]  Nicolas Courty,et al.  Optimal Transport for Domain Adaptation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  M. KarthyekRajhaaA.,et al.  Robust Wasserstein profile inference and applications to machine learning , 2019, J. Appl. Probab..

[49]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[50]  Matt Fredrikson,et al.  FlipTest: fairness testing via optimal transport , 2019, FAT*.

[51]  Nicolas Papadakis,et al.  Geodesic PCA versus Log-PCA of Histograms in the Wasserstein Space , 2018, SIAM J. Sci. Comput..

[52]  Vivien Seguy,et al.  Smooth and Sparse Optimal Transport , 2017, AISTATS.

[53]  Gabriel Peyré,et al.  Convolutional wasserstein distances , 2015, ACM Trans. Graph..

[54]  Krishna P. Gummadi,et al.  Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment , 2016, WWW.

[55]  Michael Carl Tschantz,et al.  Automated Experiments on Ad Privacy Settings: A Tale of Opacity, Choice, and Discrimination , 2014, ArXiv.

[56]  Michael Werman,et al.  A Linear Time Histogram Metric for Improved SIFT Matching , 2008, ECCV.

[57]  Tommi S. Jaakkola,et al.  Structured Optimal Transport , 2018, AISTATS.

[58]  Alexandra Chouldechova,et al.  A snapshot of the frontiers of fairness in machine learning , 2020, Commun. ACM.

[59]  Diptikalyan Saha,et al.  Verifying Individual Fairness in Machine Learning Models , 2020, UAI.

[60]  Nathan Srebro,et al.  Equality of Opportunity in Supervised Learning , 2016, NIPS.

[61]  Carlos Eduardo Scheidegger,et al.  Certifying and Removing Disparate Impact , 2014, KDD.

[62]  James E. Smith,et al.  Generalized Chebychev Inequalities: Theory and Applications in Decision Analysis , 1995, Oper. Res..

[63]  Jon M. Kleinberg,et al.  Inherent Trade-Offs in the Fair Determination of Risk Scores , 2016, ITCS.

[64]  Yuekai Sun,et al.  Auditing ML Models for Individual Bias and Unfairness , 2020, AISTATS.

[65]  Ulrike von Luxburg,et al.  Too Relaxed to Be Fair , 2020, ICML.

[66]  Bernhard Schmitzer,et al.  A Sparse Multiscale Algorithm for Dense Optimal Transport , 2015, Journal of Mathematical Imaging and Vision.

[67]  Gabriel Peyré,et al.  Stochastic Optimization for Large-scale Optimal Transport , 2016, NIPS.

[68]  Manfred Morari,et al.  Safety Verification and Robustness Analysis of Neural Networks via Quadratic Constraints and Semidefinite Programming , 2019, ArXiv.

[69]  Rachel K. E. Bellamy,et al.  AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias , 2018, ArXiv.