Efficient hybrid/mixed elements using admissible matrix formulation

Abstract The potential applications of the conceptual idea initiated by Bergan and Hanssen in designing efficient hybrid/mixed elements are described. Applications based on the extended Hellinger-Reissner and Hu-Washizu principles with the inclusion of the non-conforming displacement components are discussed. By rationally choosing the stress/strain interpolants and incorporating the admissible matrix formulation justified by the patch test consideration, the computational cost involved in matrix inversions and manipulations can effectively be reduced. Three-dimensional solid elements are given as illustrations of the proposed methodology. All the proposed elements yield satisfactory accuracy compared to other hybrid elements in the open literature.

[1]  T. Pian Derivation of element stiffness matrices by assumed stress distributions , 1964 .

[2]  T. Pian,et al.  On the suppression of zero energy deformation modes , 1983 .

[3]  T. Pian,et al.  A rational approach for choosing stress terms for hybrid finite element formulations , 1988 .

[4]  IMPROVEMENT OF THREE‐DIMENSIONAL HYBRID HEXAHEDRAL ELEMENTS BY USING ORTHOGONAL APPROACH , 1991 .

[5]  R. A. Uras,et al.  Finite element stabilization matrices-a unification approach , 1985 .

[6]  Carlos A. Felippa,et al.  A triangular bending element based on an energy-orthogonal free formulation , 1987 .

[7]  Y. K. Cheung,et al.  A new approach for the hybrid element method , 1987 .

[8]  P. Bergan,et al.  Finite elements with increased freedom in choosing shape functions , 1984 .

[9]  C. Felippa Parametrized multifield variational principles in elasticity: I. Mixed functionals , 1989 .

[10]  Theodore H. H. Pian,et al.  Alternative ways for formulation of hybrid stress elements , 1982 .

[11]  Theodore H. H. Pian,et al.  Relations between incompatible displacement model and hybrid stress model , 1986 .

[12]  P. G. Bergan,et al.  Finite elements based on energy orthogonal functions , 1980 .

[13]  J. M. Kennedy,et al.  Hourglass control in linear and nonlinear problems , 1983 .

[14]  T. Pian,et al.  CONSISTENCY CONDITION AND CONVERGENCE CRITERIA OF INCOMPATIBLE ELEMENTS: GENERAL FORMULATION OF INCOMPATIBLE FUNCTIONS AND ITS APPLICATION , 1987 .

[15]  B. Irons,et al.  Engineering applications of numerical integration in stiffness methods. , 1966 .

[16]  B. M. Fraeijs de Veubeke,et al.  An equilibrium model for plate bending , 1968 .

[17]  Kam-yim. Sze,et al.  Development of efficient and robust hybrid/mixed elements for solid structures , 1990 .

[18]  C. L. Chow,et al.  An incompatible element for axisymmetric structure and its modification by hybrid method , 1991 .

[19]  T. Belytschko,et al.  Efficient implementation of quadrilaterals with high coarse-mesh accuracy , 1986 .

[20]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[21]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[22]  K. Sze,et al.  A rational formulation of isoparametric hybrid stress elements for three-dimensional stress analysis , 1990 .

[23]  Carlos A. Felippa The extended free formulation of finite elements in linear elasticity , 1989 .

[24]  C. Felippa,et al.  Variational formulation of high performance finite elements: Parametrized variational principles , 1990 .

[25]  Robert L. Spilker,et al.  Plane isoparametric hybrid‐stress elements: Invariance and optimal sampling , 1981 .

[26]  E. Wilson,et al.  A non-conforming element for stress analysis , 1976 .

[27]  Satya N. Atluri,et al.  An analysis of, and remedies for, kinematic modes in hybrid-stress finite elements: selection of stable, invariant stress fields , 1983 .

[28]  O. C. Zienkiewicz,et al.  The patch test—a condition for assessing FEM convergence , 1986 .

[29]  Carlos A. Felippa,et al.  A triangular membrane element with rotational degrees of freedom , 1985 .

[30]  Theodore H. H. Pian,et al.  Axisymmetric solid elements by a rational hybrid stress method , 1985 .