Efficient hybrid/mixed elements using admissible matrix formulation
暂无分享,去创建一个
C. L. Chow | K. Y. Sze | K. Sze | C. Chow
[1] T. Pian. Derivation of element stiffness matrices by assumed stress distributions , 1964 .
[2] T. Pian,et al. On the suppression of zero energy deformation modes , 1983 .
[3] T. Pian,et al. A rational approach for choosing stress terms for hybrid finite element formulations , 1988 .
[4] IMPROVEMENT OF THREE‐DIMENSIONAL HYBRID HEXAHEDRAL ELEMENTS BY USING ORTHOGONAL APPROACH , 1991 .
[5] R. A. Uras,et al. Finite element stabilization matrices-a unification approach , 1985 .
[6] Carlos A. Felippa,et al. A triangular bending element based on an energy-orthogonal free formulation , 1987 .
[7] Y. K. Cheung,et al. A new approach for the hybrid element method , 1987 .
[8] P. Bergan,et al. Finite elements with increased freedom in choosing shape functions , 1984 .
[9] C. Felippa. Parametrized multifield variational principles in elasticity: I. Mixed functionals , 1989 .
[10] Theodore H. H. Pian,et al. Alternative ways for formulation of hybrid stress elements , 1982 .
[11] Theodore H. H. Pian,et al. Relations between incompatible displacement model and hybrid stress model , 1986 .
[12] P. G. Bergan,et al. Finite elements based on energy orthogonal functions , 1980 .
[13] J. M. Kennedy,et al. Hourglass control in linear and nonlinear problems , 1983 .
[14] T. Pian,et al. CONSISTENCY CONDITION AND CONVERGENCE CRITERIA OF INCOMPATIBLE ELEMENTS: GENERAL FORMULATION OF INCOMPATIBLE FUNCTIONS AND ITS APPLICATION , 1987 .
[15] B. Irons,et al. Engineering applications of numerical integration in stiffness methods. , 1966 .
[16] B. M. Fraeijs de Veubeke,et al. An equilibrium model for plate bending , 1968 .
[17] Kam-yim. Sze,et al. Development of efficient and robust hybrid/mixed elements for solid structures , 1990 .
[18] C. L. Chow,et al. An incompatible element for axisymmetric structure and its modification by hybrid method , 1991 .
[19] T. Belytschko,et al. Efficient implementation of quadrilaterals with high coarse-mesh accuracy , 1986 .
[20] T. Pian,et al. Rational approach for assumed stress finite elements , 1984 .
[21] D. Malkus,et al. Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .
[22] K. Sze,et al. A rational formulation of isoparametric hybrid stress elements for three-dimensional stress analysis , 1990 .
[23] Carlos A. Felippa. The extended free formulation of finite elements in linear elasticity , 1989 .
[24] C. Felippa,et al. Variational formulation of high performance finite elements: Parametrized variational principles , 1990 .
[25] Robert L. Spilker,et al. Plane isoparametric hybrid‐stress elements: Invariance and optimal sampling , 1981 .
[26] E. Wilson,et al. A non-conforming element for stress analysis , 1976 .
[27] Satya N. Atluri,et al. An analysis of, and remedies for, kinematic modes in hybrid-stress finite elements: selection of stable, invariant stress fields , 1983 .
[28] O. C. Zienkiewicz,et al. The patch test—a condition for assessing FEM convergence , 1986 .
[29] Carlos A. Felippa,et al. A triangular membrane element with rotational degrees of freedom , 1985 .
[30] Theodore H. H. Pian,et al. Axisymmetric solid elements by a rational hybrid stress method , 1985 .