Strawman: Resolving collisions in bursty low-power wireless networks

Low-power wireless networks must leverage radio duty cycling to reduce energy consumption, but duty cycling drastically increases the risk of radio collisions, resulting in power-expensive retransmissions or data loss. We present Strawman, a contention resolution mechanism designed for low-power duty-cycled networks that experience traffic bursts. Strawman efficiently resolves network contention, mitigates the hidden terminal problem, and has zero overhead unless activated to resolve data collisions. Our testbed experiments show that Strawman instantaneously provides increased network capacity when needed, allocates the available bandwidth evenly among contenders, and increases energy efficiency in multihop collection networks compared to the traditionally used random backoff.

[1]  A. S. Krishnakumar,et al.  Real-time traffic over the IEEE 802.11 medium access control layer , 1996, Bell Labs Technical Journal.

[2]  Kay Römer,et al.  BitMAC: a deterministic, collision-free, and robust MAC protocol for sensor networks , 2005, Proceeedings of the Second European Workshop on Wireless Sensor Networks, 2005..

[3]  François Ingelrest,et al.  SensorScope: Out-of-the-Box Environmental Monitoring , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[4]  Nuno Pereira,et al.  WiDom: A Dominance Protocol for Wireless Medium Access , 2007, IEEE Transactions on Industrial Informatics.

[5]  David E. Culler,et al.  A transmission control scheme for media access in sensor networks , 2001, MobiCom '01.

[6]  Vinayak S. Naik,et al.  A line in the sand: a wireless sensor network for target detection, classification, and tracking , 2004, Comput. Networks.

[7]  Lothar Thiele,et al.  Efficient network flooding and time synchronization with Glossy , 2011, Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks.

[8]  Kameswari Chebrolu,et al.  PIP: a connection-oriented, multi-hop, multi-channel TDMA-based MAC for high throughput bulk transfer , 2010, SenSys '10.

[9]  Y. C. Tay,et al.  Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks , 2006, EWSN.

[10]  Adam Dunkels,et al.  Approaching the Maximum 802.15.4 Multi-hop Throughput , 2008 .

[11]  Philippe Jacquet,et al.  Priority and Collision Detection with Active Signaling - The Channel Access Mechanism of HIPERLAN , 1997, Wirel. Pers. Commun..

[12]  Omer Gurewitz,et al.  RI-MAC: a receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks , 2008, SenSys '08.

[13]  Murat Demirbas,et al.  A Singlehop Collaborative Feedback Primitive for Wireless Sensor Networks , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[14]  Nitin H. Vaidya,et al.  On physical carrier sensing in wireless ad hoc networks , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[15]  R. Wattenhofer,et al.  Dozer: Ultra-Low Power Data Gathering in Sensor Networks , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[16]  M. Ringwald,et al.  BurstMAC — An efficient MAC protocol for correlated traffic bursts , 2009, 2009 Sixth International Conference on Networked Sensing Systems (INSS).

[17]  Özgür B. Akan,et al.  ESRT: event-to-sink reliable transport in wireless sensor networks , 2003, MobiHoc '03.

[18]  Andreas Willig,et al.  TWIST: a scalable and reconfigurable testbed for wireless indoor experiments with sensor networks , 2006, REALMAN '06.

[19]  V. Bharghavan,et al.  MACAW: A media access protocol for wireless LANs , 1994 .

[20]  David E. Culler,et al.  Flush: a reliable bulk transport protocol for multihop wireless networks , 2007, SenSys '07.

[21]  Dina Katabi,et al.  Zigzag decoding: combating hidden terminals in wireless networks , 2008, SIGCOMM '08.

[22]  Euhanna Ghadimi,et al.  Hidden Terminal-Aware Contention Resolution with an Optimal Distribution , 2011, 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems.

[23]  Vaduvur Bharghavan,et al.  MACAW: a media access protocol for wireless LAN's , 1994, SIGCOMM 1994.

[24]  F. Jiang,et al.  Exploiting the capture effect for collision detection and recovery , 2005, The Second IEEE Workshop on Embedded Networked Sensors, 2005. EmNetS-II..

[25]  David E. Culler,et al.  Telos: enabling ultra-low power wireless research , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[26]  Christian C. Enz,et al.  Poster abstract: wiseMAC, an ultra low power MAC protocol for the wiseNET wireless sensor network , 2003, SenSys '03.

[27]  Andreas Terzis,et al.  Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless , 2010, SenSys '10.

[28]  Deborah Estrin,et al.  An energy-efficient MAC protocol for wireless sensor networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[29]  Torsten Braun,et al.  MaxMAC: A Maximally Traffic-Adaptive MAC Protocol for Wireless Sensor Networks , 2010, EWSN.

[30]  L. Kleinrock,et al.  Packet Switching in Radio Channels : Part Il-The Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone Solution , 2022 .

[31]  Eric Anderson,et al.  X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks , 2006, SenSys '06.

[32]  Abtin Keshavarzian,et al.  Alert: An Adaptive Low-Latency Event-Driven MAC Protocol for Wireless Sensor Networks , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[33]  K. Leentvaar,et al.  The Capture Effect in FM Receivers , 1976, IEEE Trans. Commun..

[34]  Adam Dunkels,et al.  StrawMAN: making sudden traffic surges graceful in low-power wireless networks , 2010, HotEmNets.

[35]  David E. Culler,et al.  Versatile low power media access for wireless sensor networks , 2004, SenSys '04.

[36]  Kamin Whitehouse,et al.  Flash Flooding: Exploiting the Capture Effect for Rapid Flooding in Wireless Sensor Networks , 2009, IEEE INFOCOM 2009.

[37]  JeongGil Ko,et al.  Industry: beyond interoperability: pushing the performance of sensor network IP stacks , 2011, SenSys.

[38]  Philip Levis,et al.  The β-factor: measuring wireless link burstiness , 2008, SenSys '08.

[39]  Andreas Willig,et al.  Controllable radio interference for experimental and testing purposes in Wireless Sensor Networks , 2009, 2009 IEEE 34th Conference on Local Computer Networks.

[40]  Markus Anwander,et al.  BEAM: A Burst-aware Energy-efficient Adaptive MAC protocol for Wireless Sensor Networks , 2010, 2010 Seventh International Conference on Networked Sensing Systems (INSS).