Stabilizing Sets of PI/PID Controllers for Unstable Second Order Delay System

In this paper, the problem of stabilizing an unstable second order delay system using classical proportional-integral-derivative (PID) controller is considered. An extension of the Hermite-Biehler theorem, which is applicable to quasi-polynomials, is used to seek the set of complete stabilizing proportional-integral/proportional-integral-derivative (PI/PID) parameters. The range of admissible proportional gains is determined in closed form. For each proportional gain, the stabilizing set in the space of the integral and derivative gains is shown to be a triangle.

[1]  William S. Levine,et al.  The Control Handbook , 2005 .

[2]  Horng-Jang Liaw,et al.  Set-point weighted PID controller tuning for time-delayed unstable processes , 2008 .

[3]  C.-C. Chen,et al.  Control-system synthesis for open-loop unstable process with time delay , 1997 .

[4]  Ignacio E. Grossmann,et al.  Computers and Chemical Engineering , 2014 .

[5]  Mekki Ksouri,et al.  Robust PI/PID controller for interval first order system with time delay , 2011, Int. J. Model. Identif. Control..

[6]  Sunwon Park,et al.  PID controller tuning for integrating and unstable processes with time delay , 2000 .

[7]  Qing-Guo Wang,et al.  Stabilization of second-order unstable delay processes by simple controllers , 2007 .

[8]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[9]  C. K. Sanathanan,et al.  Controller design for integrating and runaway processes involving time delay , 1989 .

[10]  Shankar P. Bhattacharyya,et al.  Stabilization of first-order systems with time delay using the PID controller , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[11]  Shankar P. Bhattacharyya,et al.  Stabilization of time delay systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[12]  Shankar P. Bhattacharyya,et al.  PID Controllers for Time Delay Systems , 2004 .

[13]  Shankar P. Bhattacharyya,et al.  PI stabilization of first-order systems with time delay , 2001, Autom..

[14]  Mituhiko Araki,et al.  Future needs for the control theory in industries—report and topics of the control technology survey in Japanese industry , 1998 .

[15]  William Johns,et al.  Computer‐Aided Chemical Engineering , 2011 .

[16]  Mekki Ksouri,et al.  PI Control for Second Order Delay System with Tuning Parameter Optimization , 2009 .

[17]  Moonyong Lee,et al.  Improved Analytical PID Controller Design for the Second Order Unstable Process with Time Delay , 2007 .

[18]  Shankar P. Bhattacharyya,et al.  New results on the synthesis of PID controllers , 2002, IEEE Trans. Autom. Control..

[19]  Zexiang Li,et al.  Analysis of absolute stability for time-delay teleoperation systems , 2007, Int. J. Autom. Comput..

[20]  Qing-Chang Zhong,et al.  Robust Control of Time-delay Systems , 2006 .

[21]  C. Hwang,et al.  Stabilisation of first-order plus dead-time unstable processes using PID controllers , 2004 .

[22]  É. Poulin,et al.  PID tuning for integrating and unstable processes , 1996 .

[23]  Vineet Kumar,et al.  Parallel fuzzy P+fuzzy I+fuzzy D controller: Design and performance evaluation , 2010, Int. J. Autom. Comput..

[24]  M. Chidambaram,et al.  Enhanced Two-Degrees-of-Freedom Control Strategy for Second-Order Unstable Processes with Time Delay , 2006 .

[25]  R. Ocampo-Pérez,et al.  Adsorption of Fluoride from Water Solution on Bone Char , 2007 .

[26]  R. Padma Sree,et al.  A simple method of tuning PID controllers for stable and unstable FOPTD systems , 2004, Comput. Chem. Eng..

[27]  Mekki Ksouri,et al.  Computation of All Stabilizing PID Gain for Second-Order Delay System , 2009 .

[28]  Rames C. Panda,et al.  Synthesis of PID controller for unstable and integrating processes , 2009 .

[29]  Jing Li,et al.  Observer-based adaptive iterative learning control for nonlinear systems with time-varying delays , 2010, Int. J. Autom. Comput..

[30]  M. O'Malley,et al.  Controllers of Ziegler-Nichols type for unstable process with time delay , 1989 .

[31]  A. T. Shenton,et al.  Tuning of PID-type controllers for stable and unstable systems with time delay , 1994, Autom..

[32]  Junmin Li,et al.  Adaptive iterative learning control for nonlinear time-delay systems with periodic disturbances using FSE-neural network , 2011, Int. J. Autom. Comput..

[33]  Chi-Tsung Huang,et al.  TUNING PID CONTROLLER FOR OPEN-LOOP UNSTABLE PROCESSES WITH TIME DELAY , 1995 .