Influence of fly ash blending on hydration and physical behavior of belite–alite–ye’elimite cements

A cement powder, composed of belite, alite and ye’elimite, was blended with 0, 15 and 30 wt% of fly ash and the resulting blended cements were further characterized. During hydration, the presence of fly ash caused the partial inhibition of both AFt degradation and belite reactivity, even after 180 days. The compressive strength of the corresponding mortars increased by increasing the fly ash content (68, 73 and 82 MPa for mortars with 0, 15 and 30 wt% of fly ash, respectively, at 180 curing days), mainly due to the diminishing porosity and pore size values. Although pozzolanic reaction has not been directly proved there are indirect evidences.

[1]  C. Popescu,et al.  Industrial trial production of low energy belite cement , 2003 .

[2]  Kevin Paine,et al.  Properties of a ternary calcium sulfoaluminate-calcium sulfate-fly ash cement , 2014 .

[3]  J. M. Fernández,et al.  Study of the early hydration of calcium aluminates in the presence of different metallic salts , 2016 .

[4]  Á. G. Torre,et al.  Rietveld Quantitative Phase Analysis of OPC Clinkers, Cements and Hydration Products , 2012 .

[5]  Paramita Mondal,et al.  Physico-chemical interaction between mineral admixtures and OPC–calcium sulfoaluminate (CSA) cements and its influence on early-age expansion , 2016 .

[6]  M. García-Maté,et al.  Hydration studies of calcium sulfoaluminate cements blended with fly ash , 2013 .

[7]  J. Provis,et al.  Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge , 2016 .

[8]  Juhyuk Moon,et al.  The effect of water and gypsum content on strätlingite formation in calcium sulfoaluminate-belite cement pastes , 2018 .

[9]  F. Glasser,et al.  High-performance cement matrices based on calcium sulfoaluminate–belite compositions , 2001 .

[10]  T. Robl,et al.  Effects of ferrite concentration on synthesis, hydration and mechanical properties of alite-calcium sulfoaluminate-ferrite cements , 2017 .

[11]  F. Glasser,et al.  Hydration of calcium sulfoaluminate cement at less than 24 h , 2002 .

[12]  Cheng Xin,et al.  Effects of slag and limestone powder on the hydration and hardening process of alite-barium calcium sulphoaluminate cement , 2012 .

[13]  Karen L. Scrivener,et al.  Alite-ye'elimite cement: Synthesis and mineralogical analysis , 2013 .

[14]  S. S. Camargo,et al.  Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide , 2015 .

[15]  Milen Gateshki,et al.  Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration , 2010 .

[16]  Cheng Xin,et al.  Study on the hydration of Ba-bearing calcium sulphoaluminate in the presence of gypsum , 2004 .

[17]  Frank Winnefeld,et al.  Influence of the calcium sulphate source on the hydration mechanism of Portland cement–calcium sulphoaluminate clinker–calcium sulphate binders , 2011 .

[18]  Ivan Janotka,et al.  The hydration phase and pore structure formation in the blends of sulfoaluminate-belite cement with Portland cement , 2003 .

[19]  H. Pöllmann,et al.  Active iron-rich belite sulfoaluminate cements: clinkering and hydration. , 2010, Environmental science & technology.

[20]  Tongbo Sui,et al.  Alternative cement clinkers , 2017, Cement and Concrete Research.

[21]  Á. G. Torre,et al.  Hydration Reactions and Mechanical Strength Developments of Iron- Rich Sulfobelite Eco-cements , 2013 .

[22]  M. García-Maté,et al.  Accuracy in Rietveld quantitative phase analysis: a comparative study of strictly monochromatic Mo and Cu radiations , 2016, Journal of applied crystallography.

[23]  Diana Londono-Zuluaga,et al.  Clinkering and hydration of belite-alite-ye´elimite cement , 2017 .

[24]  Xiaolu Guo,et al.  Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production. , 2011, Waste management.

[25]  Barbara Lothenbach,et al.  Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O , 2007 .

[26]  F. Winnefeld,et al.  Influence of calcium sulfate and calcium hydroxide on the hydration of calcium sulfoaluminate clinker , 2009 .

[27]  M. García-Maté,et al.  Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement , 2015 .

[28]  M. Juenger,et al.  Synthesis and hydration of calcium sulfoaluminate-belite cements with varied phase compositions , 2011 .

[29]  S. Sahu,et al.  Phase compatibility in the system CaOSiO2Al2O3Fe2O3SO3 referred to sulphoaluminate belite cement clinker , 1993 .

[30]  Miguel A. G. Aranda,et al.  Hydration of belite–ye'elimite–ferrite cements with different calcium sulfate sources , 2016 .

[31]  F. Fauth,et al.  In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction , 2014 .

[32]  K. Wesche,et al.  Fly Ash in Concrete: Properties and Performance , 2011 .

[33]  Hui-sheng Shi,et al.  Preparation of the saving-energy sulphoaluminate cement using MSWI fly ash. , 2009, Journal of hazardous materials.

[34]  Paulo J.M. Monteiro,et al.  Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, ) in the presence of gypsum and varying amounts of calcium hydroxide , 2013 .

[35]  M. Zając,et al.  Early hydration of SCM-blended Portland cements: A pore solution and isothermal calorimetry study , 2017 .

[36]  Miguel A. G. Aranda,et al.  18 – Sulfoaluminate cement , 2013 .

[37]  B. Lothenbach,et al.  Hydration of calcium sulfoaluminate cements — Experimental findings and thermodynamic modelling , 2010 .

[38]  B. Lothenbach,et al.  Phase equilibria in the system Ca 4 Al 6 O 12 SO 4 – Ca 2 SiO 4 – CaSO 4 – H 2 O referring to the hydration of calcium sulfoaluminate cements , 2016 .

[39]  Á. G. Torre,et al.  Structure of stratlingite and effect of hydration methodology on microstructure , 2016 .

[40]  Á. G. Torre,et al.  Pseudocubic Crystal Structure and Phase Transition in Doped Ye’elimite , 2014 .

[41]  B. Lothenbach,et al.  Influence of fly ash on the hydration of calcium sulfoaluminate cement , 2017 .

[42]  D. Gastaldi,et al.  Hydration products in sulfoaluminate cements: Evaluation of amorphous phases by XRD/solid-state NMR , 2016 .

[43]  T. Hemalatha,et al.  A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete , 2017 .

[44]  L. Soriano,et al.  Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials , 2010, Journal of Thermal Analysis and Calorimetry.

[45]  Frank Winnefeld,et al.  Synthesis and hydration of alite-calcium sulfoaluminate cement , 2017 .

[46]  Anthony Halog,et al.  Effective carbon emission reductions from using upgraded fly ash in the cement industry , 2015 .

[47]  Rafat Siddique,et al.  Recent advances in understanding the role of supplementary cementitious materials in concrete , 2015 .

[48]  Jie Xu,et al.  Hydration properties of the alite–ye’elimite cement clinker synthesized by reformation , 2015 .

[49]  A. Lecomte,et al.  Impact of anhydrite proportion in a calcium sulfoaluminate cement and Portland cement blend , 2014 .

[50]  M. García-Maté,et al.  Tailored setting times with high compressive strengths in bassanite calcium sulfoaluminate eco-cements , 2016 .

[51]  Karen L. Scrivener,et al.  A Practical Guide to Microstructural Analysis of Cementitious Materials , 2015 .

[52]  Á. G. Torre,et al.  Rietveld quantitative amorphous content analysis , 2001 .

[53]  Jerome B. Hastings,et al.  Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3 , 1987 .

[54]  A. Jephcoat,et al.  A correction for powder diffraction peak asymmetry due to axial divergence , 1994 .

[55]  Kevin Paine,et al.  Performance characteristics of concrete based on a ternary calcium sulfoaluminate–anhydrite–fly ash cement , 2015 .

[56]  M. Grutzeck,et al.  29Si and 27Al MASNMR Study of Stratlingite , 1995 .

[57]  André Lecomte,et al.  Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends , 2015 .

[58]  W. A. Dollase,et al.  Correction of intensities for preferred orientation in powder diffractometry: application of the March model , 1986 .

[59]  Dachamir Hotza,et al.  Formulations of sulfobelite cement through design of experiments , 2011 .

[60]  J. Sanjayan,et al.  NMR, XRD, IR and synchrotron NEXAFS spectroscopic studies of OPC and OPC/slag cement paste hydrates , 2011 .

[61]  A. Diaz,et al.  Chemistry and mass density of aluminum hydroxide gel in eco-cements by ptychographic X-ray computed tomography , 2017 .

[62]  M. García-Maté,et al.  Rietveld quantitative phase analysis of Yeelimite-containing cements , 2012 .

[63]  A. Ayuela,et al.  Structure, Atomistic Simulations, and Phase Transition of Stoichiometric Yeelimite , 2013 .

[64]  F. Winnefeld,et al.  Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye’elimite , 2010 .