Array Algorithm for Filtering of Discrete-Time Markovian Jump Linear Systems

This note develops an array algorithm for optimal filtering of discrete-time Markovian jump linear systems (DTMJLSs). The known advantages of this kind of algorithm, which was originally developed for normal state-space systems, remain valid when it is applied to linear systems subject to Markovian jumps. It is numerically more stable in the sense that it presents better conditioning and reduced dynamical range. A numerical example, based on fixed-point implementations, is presented in order to demonstrate the advantage of this algorithm.

[1]  H. Chizeck,et al.  Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control , 1990 .

[2]  Robin J. Evans,et al.  State estimation for Markov switching systems with modal observations , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[3]  Christophe Andrieu,et al.  Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions , 2003, IEEE Trans. Signal Process..

[4]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[5]  M. Fragoso,et al.  Optimal control for continuous time LQ-problems with infinite Markov jump parameters via semigroup , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[6]  A. Bryson,et al.  Discrete square root filtering: A survey of current techniques , 1971 .

[7]  Marcelo D. Fragoso,et al.  Optimal Control for Continuous-Time Linear Quadratic Problems with Infinite Markov Jump Parameters , 2001, SIAM J. Control. Optim..

[8]  T. Kailath,et al.  Indefinite-quadratic estimation and control: a unified approach to H 2 and H ∞ theories , 1999 .

[9]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[10]  Michael Athans,et al.  The stochastic control of the F-8C aircraft using a multiple model adaptive control (MMAC) method--Part I: Equilibrium flight , 1977 .

[11]  O. Costa Linear minimum mean square error estimation for discrete-time Markovian jump linear systems , 1994, IEEE Trans. Autom. Control..

[12]  J. D. Do Val,et al.  Weak detectability and the linear-quadratic control problem of discrete-time Markov jump linear systems , 2002 .

[13]  Oswaldo Luiz V. Costa,et al.  Stationary filter for linear minimum mean square error estimator of discrete-time Markovian jump systems , 2002, IEEE Trans. Autom. Control..

[14]  O.L.V. Costa Optimal linear filtering for discrete-time Markovian jump linear systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[15]  O. Costa,et al.  Robust linear filtering for discrete-time hybrid Markov linear systems , 2002 .

[16]  Babak Hassibi,et al.  Indefinite-Quadratic Estimation And Control , 1987 .

[17]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[18]  V.K. Goyal,et al.  Estimation from lossy sensor data: jump linear modeling and Kalman filtering , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[19]  P. Dooren,et al.  Numerical aspects of different Kalman filter implementations , 1986 .

[20]  Gang George Yin,et al.  Recursive algorithms for estimation of hidden Markov models and autoregressive models with Markov regime , 2002, IEEE Trans. Inf. Theory.

[21]  Christophe Andrieu,et al.  Iterative algorithms for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[22]  M. Fragoso,et al.  Discrete-time LQ-optimal control problems for infinite Markov jump parameter systems , 1995, IEEE Trans. Autom. Control..

[23]  R. Rogers,et al.  An LQ-solution to a control problem associated with a solar thermal central receiver , 1983 .

[24]  T. Kailath,et al.  Array algorithms for H-infinity estimation , 2000 .