Revealing the microstructural evolution in a high entropy alloy enabled with transformation, twinning and precipitation

[1]  S. S. Nene,et al.  Corrosion-resistant high entropy alloy with high strength and ductility , 2019, Scripta Materialia.

[2]  Steven J. Zinkle,et al.  Towards a greater understanding of serrated flows in an Al-containing high-entropy-based alloy , 2019, International Journal of Plasticity.

[3]  Rajiv S. Mishra,et al.  Unexpected strength–ductility response in an annealed, metastable, high-entropy alloy , 2018, Applied Materials Today.

[4]  Wei Chen,et al.  Lattice distortion in a strong and ductile refractory high-entropy alloy , 2018, Acta Materialia.

[5]  R. Mishra,et al.  Microstructural Evolution and Deformation Behavior of Ni-Si- and Co-Si-Containing Metastable High Entropy Alloys , 2018, Metallurgical and Materials Transactions A.

[6]  D. Raabe,et al.  Bidirectional Transformation Enables Hierarchical Nanolaminate Dual‐Phase High‐Entropy Alloys , 2018, Advanced materials.

[7]  S. Zinkle,et al.  Irradiation responses and defect behavior of single-phase concentrated solid solution alloys , 2018, Journal of Materials Research.

[8]  Rajiv S. Mishra,et al.  Reversed strength-ductility relationship in microstructurally flexible high entropy alloy , 2018, Scripta Materialia.

[9]  Pin Lu,et al.  Computational materials design of a corrosion resistant high entropy alloy for harsh environments , 2018, Scripta Materialia.

[10]  Y. Estrin,et al.  Microstructure and Mechanical Properties of High-Entropy Alloy Co20Cr26Fe20Mn20Ni14 Processed by High-Pressure Torsion at 77 K and 300 K , 2018, Scientific Reports.

[11]  R. Mishra,et al.  Extremely high strength and work hardening ability in a metastable high entropy alloy , 2018, Scientific Reports.

[12]  Peizhen Li,et al.  Nanoscale serration and creep characteristics of Al0.5CoCrCuFeNi high-entropy alloys , 2018, Journal of Alloys and Compounds.

[13]  M. Mills,et al.  Segregation and Phase Transformations Along Superlattice Intrinsic Stacking Faults in Ni-Based Superalloys , 2018, Metallurgical and Materials Transactions A.

[14]  Zesheng Zhou,et al.  Improved the microstructure and mechanical properties of AlFeCoNi high-entropy alloy by carbon addition , 2018, Materials Science and Engineering: A.

[15]  W. Tong,et al.  Effect of thermomechanical processing on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy , 2018 .

[16]  D. Raabe,et al.  In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy , 2018 .

[17]  Y. Ivanisenko,et al.  Evolution of Microstructure and Mechanical Properties of a CoCrFeMnNi High-Entropy Alloy during High-Pressure Torsion at Room and Cryogenic Temperatures , 2018 .

[18]  Yiwen Chen,et al.  The Microstructure and Mechanical Properties of Refractory High-Entropy Alloys with High Plasticity , 2018, Materials.

[19]  N. Stepanov,et al.  Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling , 2017, Materials.

[20]  Hongyun Luo,et al.  Stable Stacking Faults Bounded by Frank Partial Dislocations in Al7075 Formed through Precipitate and Dislocation Interactions , 2017 .

[21]  S. S. Nene,et al.  Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy , 2017, Scientific Reports.

[22]  Karin A. Dahmen,et al.  Temperature effects on the serrated behavior of an Al0.5CoCrCuFeNi high-entropy alloy , 2017 .

[23]  D. Raabe,et al.  Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties , 2017, JOM.

[24]  Jun Wang,et al.  The characteristics of serration in Al0.5CoCrFeNi high entropy alloy , 2017 .

[25]  C. Liu,et al.  Precipitation hardening in CoCrFeNi-based high entropy alloys , 2017 .

[26]  C. Tasan,et al.  A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior , 2017 .

[27]  Karin A. Dahmen,et al.  Corrosion of Al xCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior , 2017 .

[28]  P. Rivera-Díaz-del-Castillo,et al.  Understanding martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects , 2017 .

[29]  Bin Liu,et al.  Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction , 2017 .

[30]  C. Tasan,et al.  Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys , 2017, Scientific Reports.

[31]  R. Mishra,et al.  A framework for shear driven dissolution of thermally stable particles during friction stir welding and processing , 2016 .

[32]  T. Nieh,et al.  Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys , 2016 .

[33]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[34]  Steven J. Zinkle,et al.  Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation , 2016 .

[35]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[36]  K. An,et al.  A precipitation-hardened high-entropy alloy with outstanding tensile properties , 2016 .

[37]  Robert O. Ritchie,et al.  Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi , 2015, Nature Communications.

[38]  M. Mills,et al.  Segregation and η phase formation along stacking faults during creep at intermediate temperatures in a Ni-based superalloy , 2015 .

[39]  H. Yasuda,et al.  Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals , 2015 .

[40]  Gunther Eggeler,et al.  Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing , 2015 .

[41]  C. Tasan,et al.  Design of a twinning-induced plasticity high entropy alloy , 2015 .

[42]  Wonbaek Kim,et al.  Microstructural Evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl High Entropy Alloys , 2015 .

[43]  R. Lebensohn,et al.  Numerical study of the stress state of a deformation twin in magnesium , 2015 .

[44]  D. Rafaja,et al.  Deformation of Austenitic CrMnNi TRIP/TWIP Steels: Nature and Role of the ɛ−martensite , 2015 .

[45]  Ren Bo,et al.  Age Hardening of AlCrMoNiTi High Entropy Alloy Prepared by Powder Metallurgy , 2014 .

[46]  D. Raabe,et al.  The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory , 2014 .

[47]  Xingdong Gao,et al.  Microstructural Evolution and Hardness of CoxCrCuFeNi High-Entropy Alloys , 2014 .

[48]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[49]  A. Rollett,et al.  Annealing twin development during recrystallization and grain growth in pure nickel , 2014 .

[50]  Dierk Raabe,et al.  A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility , 2014 .

[51]  L. Krüger,et al.  Deformation Mechanisms in Austenitic TRIP/TWIP Steel as a Function of Temperature , 2014, Metallurgical and Materials Transactions A.

[52]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[53]  A. Rollett,et al.  Formation of Annealing Twins during Recrystallization and Grain Growth in 304L Austenitic Stainless Steel , 2013 .

[54]  S. Mahajan Critique of mechanisms of formation of deformation, annealing and growth twins: Face-centered cubic metals and alloys , 2013 .

[55]  Bai-xin Liu,et al.  An Atomic-Level Mechanism of Annealing Twinning in Copper Observed by Molecular Dynamics Simulation , 2011 .

[56]  E. Bringa,et al.  Annealing twins in nanocrystalline fcc metals: A molecular dynamics simulation , 2007 .

[57]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[58]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[59]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[60]  L. Murr,et al.  A model for the formation of annealing twins in F.C.C. metals and alloys , 1978 .

[61]  G. B. Olson,et al.  A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation , 1976 .

[62]  L. Clarebrough Stacking-fault tetrahedra in annealed f.c.c. metals and alloys , 1974 .

[63]  M. Loretto,et al.  The formation of intrinsic stacking-fault tetrahedra in deformed F.C.C. alloys , 1968 .