Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives

[1]  Wolfgang Schade,et al.  Rapid test for the detection of hazardous microbiological material , 2009, Security + Defence.

[2]  J. Michael Ramsey,et al.  The burgeoning power of the shrinking laboratory , 1999, Nature Biotechnology.

[3]  W. Ortiz-Rivera,et al.  Remote Detection of Hazardous Liquids Concealed in Glass and Plastic Containers , 2010, IEEE Sensors Journal.

[4]  T. Vess,et al.  Remote Fiber-Optic Raman Analysis of Xylene Isomers in Mock Petroleum Fuels Using a Low-Cost Dispersive Instrument and Partial Least-Squares Regression Analysis , 1995 .

[5]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[6]  Michael Gaft,et al.  UV gated Raman spectroscopy for standoff detection of explosives , 2008 .

[7]  P. Vandenabeele,et al.  Comparative study of mobile Raman instrumentation for art analysis. , 2007, Analytica chimica acta.

[8]  A. Pettersson,et al.  Laser-based standoff detection of explosives: a critical review , 2009, Analytical and bioanalytical chemistry.

[9]  M. Pelletier,et al.  Quantitative Analysis Using Raman Spectrometry , 2003, Applied spectroscopy.

[10]  G. Dent,et al.  Modern Raman Spectroscopy: A Practical Approach , 2005 .

[11]  A. K. Sharma,et al.  Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives , 2008 .

[12]  Martin Hilchenbach,et al.  Remote Raman spectroscopy as a prospective tool for planetary surfaces , 2004 .

[13]  J. Moros,et al.  Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform. , 2010, Analytical chemistry.

[14]  Bernhard Lendl,et al.  Stand-off Raman spectroscopy of explosives , 2010, Security + Defence.

[15]  Barry Lienert,et al.  Pulsed remote Raman system for daytime measurements of mineral spectra. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[16]  D. A. Leonard,et al.  Observation of Raman Scattering from the Atmosphere using a Pulsed Nitrogen Ultraviolet Laser , 1967, Nature.

[17]  B. Mizaikoff,et al.  Combining scanning electrochemical microscopy with infrared attenuated total reflection spectroscopy for in situ studies of electrochemically induced processes. , 2010, Analytical chemistry.

[18]  Ian R. Lewis,et al.  Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector , 1995 .

[19]  J. Westerhuis,et al.  Quantitative Raman reaction monitoring using the solvent as internal standard. , 2005, Analytical chemistry.

[20]  S. Clegg,et al.  Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  David N. Batchelder,et al.  Dependence of the Raman spectra of drug substances upon laser excitation wavelength , 2006 .

[22]  P. Lucey,et al.  Stand-off Raman spectroscopic detection of minerals on planetary surfaces. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[23]  Ida Johansson,et al.  Near Real‐Time Standoff Detection of Explosives in a Realistic Outdoor Environment at 55 m Distance , 2009 .

[24]  G. Scollary,et al.  A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques (Technical Report) , 1997 .

[25]  H. M. Widmer,et al.  Miniaturization of Chemical Analysis Systems – A Look into Next Century's Technology or Just a Fashionable Craze? , 1991, CHIMIA.

[26]  Bernhard Lendl,et al.  Stand-off Raman spectroscopy , 2009 .

[27]  S. K. Sharma,et al.  Remote Pulsed Raman Spectroscopy of Inorganic and Organic Materials to a Radial Distance of 100 Meters , 2006, Applied spectroscopy.

[28]  Thomas J. Kulp,et al.  Remote-Raman Spectroscopy at Intermediate Ranges Using Low-Power cw Lasers , 1992 .