Algorithm 924: TIDES, a Taylor Series Integrator for Differential EquationS

This article introduces the software package TIDES and revisits the use of the Taylor series method for the numerical integration of ODEs. The package TIDES provides an easy-to-use interface for standard double precision integrations, but also for quadruple precision and multiple precision integrations. The motivation for the development of this package is that more and more scientific disciplines need very high precision solution of ODEs, and a standard ODE method is not able to reach these precision levels. The TIDES package combines a preprocessor step in Mathematica that generates Fortran or C programs with a library in C. Another capability of TIDES is the direct solution of sensitivities of the solution of ODE systems, which means that we can compute the solution of variational equations up to any order without formulating them explicitly. Different options of the software are discussed, and finally it is compared with other well-known available methods, as well as with different options of TIDES. From the numerical tests, TIDES is competitive, both in speed and accuracy, with standard methods, but it also provides new capabilities.

[1]  Robert M Corless,et al.  Polynomial cost for solving IVP for high-index DAE , 2008 .

[2]  Andreas Griewank,et al.  Introduction to Automatic Differentiation , 2003 .

[3]  W. H. Enright A new error-control for initial value solvers , 1989 .

[4]  Roberto Barrio,et al.  A three-parametric study of the Lorenz model , 2007 .

[5]  Roberto Barrio,et al.  VSVO formulation of the taylor method for the numerical solution of ODEs , 2005 .

[6]  Lawrence F. Shampine,et al.  Fixed versus variable order Runge-Kutta , 1986, TOMS.

[7]  Andreas Griewank,et al.  Evaluating higher derivative tensors by forward propagation of univariate Taylor series , 2000, Math. Comput..

[8]  N. Nedialkov,et al.  Solving Differential-Algebraic Equations by Taylor Series (I): Computing Taylor Coefficients , 2005 .

[9]  Angel Jorba,et al.  A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods , 2005, Exp. Math..

[10]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[11]  Philip W. Sharp,et al.  Achieving Brouwer's law with high-order Stormer multistep methods , 2005 .

[12]  Y. F. Chang,et al.  Automatic solution of differential equations , 1974 .

[13]  Zbigniew Galias,et al.  Interval Methods for Rigorous Investigations of periodic orbits , 2001, Int. J. Bifurc. Chaos.

[14]  Stephen Wolfram,et al.  The Mathematica book (4th edition) , 1999 .

[15]  John D. Pryce,et al.  Two FORTRAN packages for assessing initial value methods , 1987, TOMS.

[16]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[17]  George F. Corliss,et al.  Solving Ordinary Differential Equations Using Taylor Series , 1982, TOMS.

[18]  J. D. Pryce,et al.  Solving high-index DAEs by Taylor series , 1998, Numerical Algorithms.

[19]  David Barton,et al.  On Taylor Series and Stiff Equations , 1980, TOMS.

[20]  Roberto Barrio,et al.  Performance of the Taylor series method for ODEs/DAEs , 2005, Appl. Math. Comput..

[21]  Andreas Griewank,et al.  ODE Solving via Automatic Differentiation and Rational Prediction , 1996 .

[22]  Roberto Barrio,et al.  Sensitivity Analysis of ODES/DAES Using the Taylor Series Method , 2005, SIAM J. Sci. Comput..

[23]  George F. Corliss,et al.  Ratio-Like and Recurrence Relation Tests for Convergence of Series , 1980 .

[24]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[25]  Richard D. Neidinger An efficient method for the numerical evaluation of partial derivatives of arbitrary order , 1992, TOMS.

[26]  Andreas Griewank,et al.  High-Order Stiff ODE Solvers via Automatic Differentiation and Rational Prediction , 1996, WNAA.

[27]  Dirk Brouwer,et al.  Erratum [On the accumulation of errors in numerical integration] , 1937 .

[28]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[29]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[30]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[31]  J. Pryce A Simple Structural Analysis Method for DAEs , 2001 .

[32]  Ernst Hairer,et al.  Achieving Brouwer’s law with implicit Runge–Kutta methods , 2008 .

[33]  G. Corliss,et al.  Choosing a stepsize for Taylor series methods for solving ODE'S , 1977 .

[34]  William Kahan,et al.  Pracniques: further remarks on reducing truncation errors , 1965, CACM.

[35]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[36]  Philip W. Sharp,et al.  Long simulations of the Solar System: Brouwer's Law and chaos , 2005 .

[37]  R. F. Arenstorf,et al.  PERIODIC SOLUTIONS OF THE RESTRICTED THREE BODY PROBLEM REPRESENTING ANALYTIC CONTINUATIONS OF KEPLERIAN ELLIPTIC MOTIONS. , 1963 .

[38]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[39]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[40]  David Barton,et al.  The Automatic Solution of Systems of Ordinary Differential Equations by the Method of Taylor Series , 1971, Computer/law journal.

[41]  Carles Simó Global dynamics and fast indicators , 2001 .

[42]  N. Nedialkov,et al.  Solving differential algebraic equations by Taylor Series(III): the DAETS Code , 2005 .

[43]  Wayne H. Enright,et al.  Robust and reliable defect control for Runge-Kutta methods , 2007, TOMS.

[44]  Roberto Barrio,et al.  Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems , 2009 .

[45]  Warwick Tucker,et al.  Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .

[46]  F. L. Bauer Computational Graphs and Rounding Error , 1974 .

[47]  Philip W. Sharp,et al.  N-body simulations: The performance of some integrators , 2006, TOMS.

[48]  Divakar Viswanath,et al.  The fractal property of the Lorenz attractor , 2004 .

[49]  Archie E. Roy,et al.  Studies in the application of recurrence relations to special perturbation methods , 1972 .

[50]  Roberto Barrio,et al.  Bifurcations and safe regions in open Hamiltonians , 2009 .

[51]  Johannes Willkomm,et al.  Introduction to Automatic Differentiation , 2009 .

[52]  Roberto Barrio,et al.  Painting Chaos: a Gallery of Sensitivity Plots of Classical Problems , 2006, Int. J. Bifurc. Chaos.

[53]  Antonio Elipe,et al.  Automatic programming of recurrent power series , 1999 .

[54]  Jonathan M. Borwein,et al.  High-precision computation: Mathematical physics and dynamics , 2010, Appl. Math. Comput..

[55]  Igor Tsukanov,et al.  Data structure and algorithms for fast automatic differentiation , 2003 .

[56]  Martin Berz,et al.  COSY INFINITY Version 9 , 2006 .

[57]  Louis B. Rall,et al.  Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.

[58]  Leonhard Euler Institutionum calculi integralis , 1824 .

[59]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[60]  Roberto Barrio,et al.  Periodic, escape and chaotic orbits in the Copenhagen and the (n + 1)-body ring problems , 2009 .

[61]  Vincent Lefèvre,et al.  MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.

[62]  H. Broer,et al.  Global Analysis of Dynamical Systems , 2001 .

[63]  Nathalie Revol,et al.  Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY , 2005, J. Log. Algebraic Methods Program..

[64]  Robert M. Corless,et al.  A New View of the Computational Complexity of IVP for ODE , 2002, Numerical Algorithms.

[65]  G. Corliss,et al.  ATOMFT: solving ODEs and DAEs using Taylor series , 1994 .

[66]  O. Nevanlinna,et al.  Stability and accuracy of time discretizations for initial value problems , 1982 .

[67]  David H. Bailey,et al.  A Fortran 90-based multiprecision system , 1995, TOMS.

[68]  R. V. M. Zahar,et al.  Numerical integration of an orbit and its concomitant variations by recurrent power series , 1966 .

[69]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[70]  N. Nedialkov,et al.  Solving differential algebraic equations by Taylor Series(III): the DAETS Code , 2008 .

[71]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[72]  Richard D. Neidinger Directions for computing truncated multivariate Taylor series , 2005, Math. Comput..