A Multilevel Monte Carlo Evolutionary Algorithm for Robust Aerodynamic Shape Design
暂无分享,去创建一个
[1] Charles Audet,et al. A method for stochastic constrained optimization using derivative-free surrogate pattern search and collocation , 2010, J. Comput. Phys..
[2] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[3] G. Golub,et al. Updating formulae and a pairwise algorithm for computing sample variances , 1979 .
[4] Sandia Report,et al. Formulas for Robust, One-Pass Parallel Computation of Covariances and Arbitrary-Order Statistical Moments , 2008 .
[5] Fabio Nobile,et al. MATHICSE Technical Report : A continuation multi level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible aerodynamics , 2016 .
[6] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.
[7] Farrokh Mistree,et al. Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization , 2001 .
[8] Geoffrey T. Parks,et al. Robust Aerodynamic Design Optimization Using Polynomial Chaos , 2009 .
[9] James K. Guest,et al. Topology optimization of continuum structures under uncertainty – A Polynomial Chaos approach , 2012 .
[10] Pénélope Leyland,et al. A Continuation Multi Level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible inviscid aerodynamics , 2017 .
[11] S. L. Ho,et al. A Fast Robust Optimization Methodology Based on Polynomial Chaos and Evolutionary Algorithm for Inverse Problems , 2012, IEEE Transactions on Magnetics.
[12] Stefan Heinrich,et al. Monte Carlo Complexity of Global Solution of Integral Equations , 1998, J. Complex..
[13] Michael B. Giles,et al. Multilevel Monte Carlo path simulation using the Milstein discretisation for option prizing , 2010 .
[14] Stefan Roth,et al. Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.
[15] Alexey Chernov,et al. Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems , 2015, Numerische Mathematik.
[16] R. Tempone,et al. A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.
[17] Elisabeth Ullmann,et al. Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.
[18] B. Welford. Note on a Method for Calculating Corrected Sums of Squares and Products , 1962 .
[19] Pénélope Leyland,et al. A Multi Level Monte Carlo Algorithm for the Treatment of Geometrical and Operational Uncertainties in Internal and External Aerodynamics , 2016 .
[20] R. M. Hicks,et al. Application of numerical optimization to the design of supercritical airfoils without drag-creep , 1977 .