Bayesian estimation of causal direction in acyclic structural equation models with individual-specific confounder variables and non-Gaussian distributions

Several existing methods have been shown to consistently estimate causal direction assuming linear or some form of nonlinear relationship and no latent confounders. However, the estimation results could be distorted if either assumption is violated. We develop an approach to determining the possible causal direction between two observed variables when latent confounding variables are present. We first propose a new linear non-Gaussian acyclic structural equation model with individual-specific effects that are sometimes the source of confounding. Thus, modeling individual-specific effects as latent variables allows latent confounding to be considered. We then propose an empirical Bayesian approach for estimating possible causal direction using the new model. We demonstrate the effectiveness of our method using artificial and real-world data.

[1]  Aapo Hyvärinen,et al.  Estimating exogenous variables in data with more variables than observations , 2011, Neural Networks.

[2]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[3]  Aapo Hyvärinen,et al.  DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model , 2011, J. Mach. Learn. Res..

[4]  E. Demidenko,et al.  Mixed Models: Theory and Applications (Wiley Series in Probability and Statistics) , 2004 .

[5]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[6]  Bernhard Schölkopf,et al.  Nonlinear causal discovery with additive noise models , 2008, NIPS.

[7]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[8]  Aapo Hyvärinen,et al.  Pairwise likelihood ratios for estimation of non-Gaussian structural equation models , 2013, J. Mach. Learn. Res..

[9]  Aapo Hyvärinen,et al.  Topographic Independent Component Analysis , 2001, Neural Computation.

[10]  Patrik O. Hoyer,et al.  Causal Search in Structural Vector Autoregressive Models , 2009, NIPS Mini-Symposium on Causality in Time Series.

[11]  V. Koivunen,et al.  Identifiability and Separability of Linear Ica Models Revisited , 2003 .

[12]  Eugene Demidenko Mixed Models: Theory and Applications (Wiley Series in Probability and Statistics) , 2004 .

[13]  Patrik O. Hoyer,et al.  Bayesian Discovery of Linear Acyclic Causal Models , 2009, UAI.

[14]  Aapo Hyvärinen,et al.  Causal discovery of linear acyclic models with arbitrary distributions , 2008, UAI.

[15]  Bernhard Schölkopf,et al.  Invariant Gaussian Process Latent Variable Models and Application in Causal Discovery , 2010, UAI.

[16]  P. Spirtes,et al.  An Algorithm for Fast Recovery of Sparse Causal Graphs , 1991 .

[17]  Clark Glymour,et al.  Non-Gaussian methods and high-pass filters in the estimation of effective connections , 2014, NeuroImage.

[18]  Christopher Meek,et al.  Strong completeness and faithfulness in Bayesian networks , 1995, UAI.

[19]  Patrik O. Hoyer,et al.  Discovering Cyclic Causal Models by Independent Components Analysis , 2008, UAI.

[20]  Bernhard Schölkopf,et al.  Identifiability of Causal Graphs using Functional Models , 2011, UAI.

[21]  Jan de Leeuw,et al.  Introducing Multilevel Modeling , 1998 .

[22]  David Maxwell Chickering,et al.  A Clinician's Tool for Analyzing Non-Compliance , 1996, AAAI/IAAI, Vol. 2.

[23]  Arthur Gretton,et al.  Nonlinear directed acyclic structure learning with weakly additive noise models , 2009, NIPS.

[24]  J. Viikari,et al.  Pairwise Measures of Causal Direction in the Epidemiology of Sleep Problems and Depression , 2012, PloS one.

[25]  Pierre Comon Independent component analysis - a new concept? signal processing , 1994 .

[26]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[27]  Andreas Ritter,et al.  Structural Equations With Latent Variables , 2016 .

[28]  Zhitang Chen,et al.  Causality in Linear Nongaussian Acyclic Models in the Presence of Latent Gaussian Confounders , 2013, Neural Computation.

[29]  Aapo Hyvärinen,et al.  On the Identifiability of the Post-Nonlinear Causal Model , 2009, UAI.

[30]  Aapo Hyvärinen,et al.  A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..

[31]  Patrik O. Hoyer,et al.  Estimation of causal effects using linear non-Gaussian causal models with hidden variables , 2008, Int. J. Approx. Reason..

[32]  Y. Dodge,et al.  On Asymmetric Properties of the Correlation Coeffcient in the Regression Setting , 2001 .

[33]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[34]  O. D. Duncan,et al.  Socioeconomic Background and Achievement. , 1974 .

[35]  Oyer,et al.  Causal Inference by Independent Component Analysis: Theory and Applications∗ , 2012 .

[36]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[37]  Aapo Hyvärinen,et al.  Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity , 2010, J. Mach. Learn. Res..

[38]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[39]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[40]  J. Norris Appendix: probability and measure , 1997 .

[41]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[42]  Samuel Kotz,et al.  Multivariate T-Distributions and Their Applications , 2004 .

[43]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[44]  C. University Automated Search for Causal Relations : Theory and Practice , 2015 .

[45]  Patrik O. Hoyer,et al.  Discovering Unconfounded Causal Relationships Using Linear Non-Gaussian Models , 2010, JSAI-isAI Workshops.

[46]  Lars R Bergman,et al.  Research strategies in developmental psychopathology: Dimensional identity and the person-oriented approach , 2003, Development and Psychopathology.

[47]  Mikael Henaff,et al.  New methods for separating causes from effects in genomics data , 2012, BMC Genomics.

[48]  Bernhard Schölkopf,et al.  Causal Inference on Discrete Data Using Additive Noise Models , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Ole Winther,et al.  Sparse Linear Identifiable Multivariate Modeling , 2010, J. Mach. Learn. Res..