Oceanographic drivers of the vertical distribution of a highly migratory, endothermic shark

[1]  Ian G. Taylor,et al.  Incorporating movement in the modelling of shark and ray population dynamics: approaches and management implications , 2016, Reviews in Fish Biology and Fisheries.

[2]  M. Francis,et al.  Life in the open ocean: seasonal migration and diel diving behaviour of Southern Hemisphere porbeagle sharks (Lamna nasus) , 2015 .

[3]  M. Francis,et al.  Life in the open ocean: seasonal migration and diel diving behaviour of Southern Hemisphere porbeagle sharks (Lamna nasus) , 2015, Marine Biology.

[4]  D. M. Coffey,et al.  First autonomous recording of in situ dissolved oxygen from free-ranging fish , 2015, Animal Biotelemetry.

[5]  Alistair J. Hobday,et al.  Dynamic ocean management: Defining and conceptualizing real-time management of the ocean , 2015 .

[6]  Daniel W. Fuller,et al.  Assessing niche width of endothermic fish from genes to ecosystem , 2015, Proceedings of the National Academy of Sciences.

[7]  Randall K. Kosaki,et al.  Movements and foraging of predators associated with mesophotic coral reefs and their potential for linking ecological habitats , 2015 .

[8]  Jorge Fontes,et al.  Extreme diving behaviour in devil rays links surface waters and the deep ocean , 2014, Nature Communications.

[9]  M. Eremets,et al.  Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound , 2014, Nature Communications.

[10]  Scott A. Shaffer,et al.  Predicted habitat shifts of Pacific top predators in a changing climate , 2013 .

[11]  Scott A. Shaffer,et al.  State‐space framework for estimating measurement error from double‐tagging telemetry experiments , 2012 .

[12]  Nicolas E. Humphries,et al.  Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics. , 2012, The Journal of animal ecology.

[13]  Nicolas E. Humphries,et al.  Spatial Dynamics and Expanded Vertical Niche of Blue Sharks in Oceanographic Fronts Reveal Habitat Targets for Conservation , 2012, PloS one.

[14]  C. Perle,et al.  Seasonal changes in depth distribution of salmon sharks (Lamna ditropis) in Alaskan waters: implications for foraging ecology , 2011 .

[15]  K. M. Schaefer,et al.  Tracking apex marine predator movements in a dynamic ocean , 2011, Nature.

[16]  Adrian C. Gleiss,et al.  Moved by that sinking feeling: variable diving geometry underlies movement strategies in whale sharks , 2011 .

[17]  Heidi Dewar,et al.  Evaluating post-release behaviour modification in large pelagic fish deployed with pop-up satellite archival tags , 2011 .

[18]  Katsufumi Sato,et al.  Yo-yo vertical movements suggest a foraging strategy for tiger sharks Galeocerdo cuvier , 2011 .

[19]  B. Seibel Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones , 2011, Journal of Experimental Biology.

[20]  E. Hazen,et al.  Meridional patterns in the deep scattering layers and top predator distribution in the central equatorial Pacific , 2010 .

[21]  Nicolas E. Humphries,et al.  Environmental context explains Lévy and Brownian movement patterns of marine predators , 2010, Nature.

[22]  Alain F. Zuur,et al.  A protocol for data exploration to avoid common statistical problems , 2010 .

[23]  G. Lawson,et al.  Movements and diving behavior of Atlantic bluefin tuna Thunnus thynnus in relation to water column structure in the northwestern Atlantic , 2010 .

[24]  Barbara A. Block,et al.  Habitat use in Atlantic bluefin tuna Thunnus thynnus inferred from diving behavior , 2009 .

[25]  K. J. Goldman,et al.  White Shark Offshore Habitat: A Behavioral and Environmental Characterization of the Eastern Pacific Shared Offshore Foraging Area , 2009, PloS one.

[26]  A. Zuur,et al.  Mixed Effects Models and Extensions in Ecology with R , 2009 .

[27]  David W. Sims,et al.  First results from satellite-linked archival tagging of porbeagle shark, Lamna nasus: Area fidelity, wider-scale movements and plasticity in diel depth changes , 2009 .

[28]  B. Block,et al.  Migration of an upper trophic level predator, the salmon shark Lamna ditropis, between distant ecoregions , 2008 .

[29]  L. Keele Semiparametric Regression for the Social Sciences , 2008 .

[30]  Scot D. Anderson,et al.  Migration and habitat of white sharks (Carcharodon carcharias) in the eastern Pacific Ocean , 2007 .

[31]  B. Block,et al.  Annual migrations, diving behavior, and thermal biology of Atlantic bluefin tuna, Thunnus thynnus, on their Gulf of Mexico breeding grounds , 2007 .

[32]  R. Shadwick,et al.  Mammal-like muscles power swimming in a cold-water shark , 2005, Nature.

[33]  Kevin C Weng,et al.  Satellite Tagging and Cardiac Physiology Reveal Niche Expansion in Salmon Sharks , 2005, Science.

[34]  A. Aires-da-Silva,et al.  Seasonal foraging movements and migratory patterns of female Lamna ditropis tagged in Prince William Sound, Alaska , 2005 .

[35]  E. Southall,et al.  Habitat‐specific normal and reverse diel vertical migration in the plankton‐feeding basking shark , 2005 .

[36]  K. J. Goldman,et al.  Homeothermy in adult salmon sharks, Lamna ditropis , 2004, Environmental Biology of Fishes.

[37]  Kevin C. Weng,et al.  Validation of geolocation estimates based on light level and sea surface temperature from electronic tags , 2004 .

[38]  S. Kohin,et al.  Movement patterns, depth preferences, and stomach temperatures of free-swimming juvenile mako sharks, Isurus oxyrinchus, in the Southern California Bight , 2004 .

[39]  J. Graham,et al.  Comparative studies of high performance swimming in sharks I. Red muscle morphometrics, vascularization and ultrastructure , 2003, Journal of Experimental Biology.

[40]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[41]  Richard W. Brill,et al.  Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data , 2003 .

[42]  G. Sedberry,et al.  Island in the Stream: Oceanography and Fisheries of the Charleston Bump , 2001 .

[43]  R. Shadwick,et al.  Review: Analysis of the evolutionary convergence for high performance swimming in lamnid sharks and tunas. , 2001, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[44]  T. Lowe,et al.  Blood oxygen-binding characteristics of bigeye tuna (Thunnus obesus), a high-energy-demand teleost that is tolerant of low ambient oxygen , 2000 .

[45]  Peter A. Rochford,et al.  An optimal definition for ocean mixed layer depth , 2000 .

[46]  R. Brodeur,et al.  Epipelagic nekton of the North Pacific Subarctic and Transition Zones , 1999 .

[47]  A. Longhurst Ecological Geography of the Sea , 1998 .

[48]  L. Dagorn,et al.  Simultaneous observations of tuna movements and their prey by sonic tracking and acoustic surveys , 1998, Hydrobiologia.

[49]  Richard W. Brill,et al.  A review of temperature and oxygen tolerance studies of tunas pertinent to fisheries oceanography, movement models and stock assessments , 1994 .

[50]  J. Finnerty,et al.  Endothermy in fishes: a phylogenetic analysis of constraints, predispositions, and selection pressures , 1994, Environmental Biology of Fishes.

[51]  David A. Fournier,et al.  Physiological and behavioural thermoregulation in bigeye tuna (Thunnus obesus) , 1992, Nature.

[52]  Richard W. Brill,et al.  Responses of Swimming Skipjack (Katsuwonus pelamis) and Yellowfin (Thunnus albacares) Tunas to Acute Hypoxia, and a Model of Their Cardiorespiratory Function , 1991, Physiological Zoology.

[53]  Richard W. Brill,et al.  Cardiorespiratory responses of skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye tuna (Thunnus obesus) to acute reductions of ambient oxygen , 1990 .

[54]  A. Szczepanski,et al.  GILL DIMENSIONS IN PELAGIC ELASMOBRANCH FISHES , 1986 .

[55]  S. Emery,et al.  Hematological Comparisons of Endothermic vs Ectothermic Elasmobranch Fishes , 1986 .

[56]  A. Dizon,et al.  The physiological ecology of tunas , 1979 .

[57]  B. Block,et al.  Influence of temperature and oxygen on the distribution of blue marlin (Makaira nigricans) in the Central Pacific , 2017 .

[58]  K. J. Goldman,et al.  Seasonal changes in depth distribution of salmon sharks (Lamna ditropis) in Alaskan waters: implications for foraging ecology , 2011 .

[59]  A. Longhurst TOWARD AN ECOLOGICAL GEOGRAPHY OF THE SEA , 2007 .

[60]  J. Musick,et al.  Growth and maturity of salmon sharks (Lamna ditropis) in the eastern and western North Pacific, and comments on back-calculation methods , 2006 .

[61]  F. G. Carey,et al.  Daily patterns in the activities of swordfish, Xiphias gladius, observed by acoustic telemetry , 1981 .

[62]  W. J. Vlymen,et al.  II. – THE RELATION BETWEEN HEAT GENERATION, CONSERVATION, AND THE SWIMMING ENERGETICS OF TUNAS , 1978 .