A Combined Preconditioning Strategy for Nonsymmetric Systems
暂无分享,去创建一个
Blanca Ayuso de Dios | Panayot S. Vassilevski | Andrew T. Barker | P. Vassilevski | A. Barker | B. A. Dios
[1] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[2] Xiaobing Feng,et al. Two-Level Additive Schwarz Methods for a Discontinuous Galerkin Approximation of Second Order Elliptic Problems , 2001, SIAM J. Numer. Anal..
[3] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[4] S. Vandewalle,et al. Schwarz Methods: To Symmetrize or Not to Symmetrize , 1996, 1001.1362.
[5] A. T. Barker,et al. Overlapping Schwarz domain decomposition preconditioners for the local discontinuous Galerkin method for elliptic problems , 2011, J. Num. Math..
[6] Blanca Ayuso de Dios,et al. Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems , 2009, SIAM J. Numer. Anal..
[7] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[8] D. Szyld,et al. MPGMRES : A GENERALIZED MINIMUM RESIDUAL METHOD WITH MULTIPLE PRECONDITIONERS , 2012 .
[9] Mary F. Wheeler,et al. Compatible algorithms for coupled flow and transport , 2004 .
[10] G. Starke. Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .
[11] M. Holst,et al. Multilevel preconditioners for discontinuous, Galerkin approximations of elliptic problems, with jump coefficients , 2010, Math. Comput..
[12] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[13] Axel Klawonn,et al. Block triangular preconditioners for nonsymmetric saddle point problems: field-of-values analysis , 1999, Numerische Mathematik.
[14] Paola F. Antonietti,et al. Multiplicative Schwarz Methods for Discontinuous Galerkin Approximations ofElliptic Problems , 2007 .
[15] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[16] Thomas A. Manteuffel,et al. First-Order System Least Squares for Incompressible Resistive Magnetohydrodynamics , 2010, SIAM J. Sci. Comput..
[17] Blanca Ayuso de Dios,et al. Uniformly Convergent Iterative Methods for Discontinuous Galerkin Discretizations , 2009, J. Sci. Comput..
[18] Chen Greif,et al. Additive Schwarz with variable weights , 2014 .
[19] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[20] Thomas A. Manteuffel,et al. An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation , 2007, J. Comput. Phys..
[21] Endre Süli,et al. Discontinuous Galerkin Finite Element Approximation of Nonlinear Second-Order Elliptic and Hyperbolic Systems , 2007, SIAM J. Numer. Anal..
[22] E. Süli,et al. A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs , 2007 .
[23] O. Axelsson,et al. A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .
[24] Robert Bridson,et al. A Multipreconditioned Conjugate Gradient Algorithm , 2005, SIAM J. Matrix Anal. Appl..
[25] M. SIAMJ.,et al. RESIDUAL-MINIMIZING KRYLOV SUBSPACE METHODS FOR STABILIZED DISCRETIZATIONS OF CONVECTION-DIFFUSION EQUATIONS∗ , 1998 .
[26] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[27] Paola F. Antonietti,et al. Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case , 2007 .