A Combined Preconditioning Strategy for Nonsymmetric Systems

We present and analyze a class of nonsymmetric preconditioners within a normal (weighted least-squares) matrix form for use in GMRES to solve nonsymmetric matrix problems that typically arise in finite element discretizations. An example of the additive Schwarz method applied to nonsymmetric but definite matrices is presented for which the abstract assumptions are verified. A variable preconditioner, combining the original nonsymmetric one and a weighted least-squares version of it, is shown to be convergent and provides a viable strategy for using nonsymmetric preconditioners in practice. Numerical results are included to assess the theory and the performance of the proposed preconditioners.

[1]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[2]  Xiaobing Feng,et al.  Two-Level Additive Schwarz Methods for a Discontinuous Galerkin Approximation of Second Order Elliptic Problems , 2001, SIAM J. Numer. Anal..

[3]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[4]  S. Vandewalle,et al.  Schwarz Methods: To Symmetrize or Not to Symmetrize , 1996, 1001.1362.

[5]  A. T. Barker,et al.  Overlapping Schwarz domain decomposition preconditioners for the local discontinuous Galerkin method for elliptic problems , 2011, J. Num. Math..

[6]  Blanca Ayuso de Dios,et al.  Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems , 2009, SIAM J. Numer. Anal..

[7]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[8]  D. Szyld,et al.  MPGMRES : A GENERALIZED MINIMUM RESIDUAL METHOD WITH MULTIPLE PRECONDITIONERS , 2012 .

[9]  Mary F. Wheeler,et al.  Compatible algorithms for coupled flow and transport , 2004 .

[10]  G. Starke Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .

[11]  M. Holst,et al.  Multilevel preconditioners for discontinuous, Galerkin approximations of elliptic problems, with jump coefficients , 2010, Math. Comput..

[12]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[13]  Axel Klawonn,et al.  Block triangular preconditioners for nonsymmetric saddle point problems: field-of-values analysis , 1999, Numerische Mathematik.

[14]  Paola F. Antonietti,et al.  Multiplicative Schwarz Methods for Discontinuous Galerkin Approximations ofElliptic Problems , 2007 .

[15]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[16]  Thomas A. Manteuffel,et al.  First-Order System Least Squares for Incompressible Resistive Magnetohydrodynamics , 2010, SIAM J. Sci. Comput..

[17]  Blanca Ayuso de Dios,et al.  Uniformly Convergent Iterative Methods for Discontinuous Galerkin Discretizations , 2009, J. Sci. Comput..

[18]  Chen Greif,et al.  Additive Schwarz with variable weights , 2014 .

[19]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[20]  Thomas A. Manteuffel,et al.  An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation , 2007, J. Comput. Phys..

[21]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of Nonlinear Second-Order Elliptic and Hyperbolic Systems , 2007, SIAM J. Numer. Anal..

[22]  E. Süli,et al.  A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs , 2007 .

[23]  O. Axelsson,et al.  A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .

[24]  Robert Bridson,et al.  A Multipreconditioned Conjugate Gradient Algorithm , 2005, SIAM J. Matrix Anal. Appl..

[25]  M. SIAMJ.,et al.  RESIDUAL-MINIMIZING KRYLOV SUBSPACE METHODS FOR STABILIZED DISCRETIZATIONS OF CONVECTION-DIFFUSION EQUATIONS∗ , 1998 .

[26]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[27]  Paola F. Antonietti,et al.  Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case , 2007 .