Monotonicity in the Framework of Generalized Convexity

An increasing function f : R n → R ∪ +∞ is a function such that f(x′) ≥ f(x) whenever x′ ≥ x (component-wise). A downward set G ⊂ R n is a set such that x ∈ G whenever x′ ≥ x for some x′ ∈ G. We present a geometric theory of monotonicity in which increasing functions relate to downward sets in the same way as convex functions relate to convex sets. By giving a central role to a separation property of downward sets similar to that of convex sets, a theory of monotonic optimization can be developed which parallels d.c. optimization in several respects.

[1]  Tomomi Matsui,et al.  Parametric simplex algorithms for solving a special class of nonconvex minimization problems , 1991, J. Glob. Optim..

[2]  Alexander M. Rubinov,et al.  Downward Sets and their separation and approximation properties , 2002, J. Glob. Optim..

[3]  H. Tuy,et al.  An alogrithm for monotonic global optimization problems , 2001 .

[4]  I. Singer Abstract Convex Analysis , 1997 .

[5]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Modeling and Computation , 1988 .

[6]  U. Passy,et al.  Local-global properties of bifunctions , 1992 .

[7]  Hoang Tuy,et al.  A Unified Monotonic Approach to Generalized Linear Fractional Programming , 2003, J. Glob. Optim..

[8]  Panos Y. Papalambros,et al.  Notes on the Operational Utility of Monotonicity in Optimization , 1982 .

[9]  Hoang Tuy,et al.  A New Approach to Optimization Under Monotonic Constraint , 2000, J. Glob. Optim..

[10]  Hoang Tuy,et al.  On Global Optimality Conditions and Cutting Plane Algorithms , 2003 .

[11]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[12]  P. T. Thach,et al.  Optimization on Low Rank Nonconvex Structures , 1996 .

[13]  H. Tuy Convex analysis and global optimization , 1998 .

[14]  Ury Passy Global solutions of mathematical programs with intrinsically concave functions , 1978 .

[15]  Michel Minoux,et al.  Discrete Monotonic Optimization with Application to a Discrete Location Problem , 2006, SIAM J. Optim..

[16]  Hoang Tuy,et al.  D.C. Optimization: Theory, Methods and Algorithms , 1995 .

[17]  Ury Passy,et al.  Projectively-convex sets and functions , 1988 .

[18]  Hoang Tuy,et al.  Monotonic Optimization: Problems and Solution Approaches , 2000, SIAM J. Optim..

[19]  Hiroshi Konno,et al.  Generalized linear multiplicative and fractional programming , 1991 .

[20]  W. Ziemba,et al.  Generalized concavity in optimization and economics , 1981 .

[21]  H. Tuy Convex programs with an additional reverse convex constraint , 1987 .

[22]  A. Rubinov Abstract Convexity and Global Optimization , 2000 .