Resolution with Order and Selection for Hybrid Logics

We investigate labeled resolution calculi for hybrid logics with inference rules restricted via selection functions and orders. We start by providing a sound and refutationally complete calculus for the hybrid logic $\mathcal{H}(@,{\downarrow},\mathsf{A})$, even under restrictions by selection functions and orders. Then, by imposing further restrictions in the original calculus, we develop a sound, complete and terminating calculus for the $\mathcal{H}(@)$ sublanguage. The proof scheme we use to show refutational completeness of these calculi is an adaptation of a standard completeness proof for saturation-based calculi for first-order logic that guarantees completeness even under redundancy elimination. In fact, one of the contributions of this article is to show that the general framework of saturation-based proving for first-order logic with equality can be naturally adapted to saturation-based calculi for other languages, in particular modal and hybrid logics.

[1]  Maarten Marx,et al.  A Road-Map on Complexity for Hybrid Logics , 1999, CSL.

[2]  Ullrich Hustadt,et al.  Resolution-Based Methods for Modal Logics , 2000, Log. J. IGPL.

[3]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[4]  Patrick Blackburn,et al.  Representation, Reasoning, and Relational Structures: a Hybrid Logic Manifesto , 2000, Log. J. IGPL.

[5]  L. Fariñas-del-Cerro,et al.  Resolution modal logics , 1989 .

[6]  Maarten de Rijke,et al.  Resolution in Modal, Description and Hybrid Logic , 2001, J. Log. Comput..

[7]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[8]  J. Cheney,et al.  A sequent calculus for nominal logic , 2004, LICS 2004.

[9]  Ullrich Hustadt,et al.  Using Resolution for Testing Modal Satisfiability and Building Models , 2002, Journal of Automated Reasoning.

[10]  Erich Grädel,et al.  On the Restraining Power of Guards , 1999, Journal of Symbolic Logic.

[11]  Alan Robinson,et al.  The Inverse Method , 2001, Handbook of Automated Reasoning.

[12]  Christoph Weidenbach System Description: Spass Version 1.0.0 , 1999, CADE.

[13]  Martín Abadi,et al.  A Timely Resolution , 1986, LICS.

[14]  Boris Motik,et al.  A Resolution-Based Decision Procedure for SHOIQ , 2006, IJCAR.

[15]  Carlos Areces,et al.  Logic Engineering. The Case of Description and Hybrid Logics , 2000 .

[16]  Maarten Marx,et al.  The Computational Complexity of Hybrid Temporal Logics , 2000, Log. J. IGPL.

[17]  Harald Ganzinger,et al.  A superposition decision procedure for the guarded fragment with equality , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[18]  Maarten de Rijke,et al.  Deciding the guarded fragments by resolution , 2003, J. Symb. Comput..

[19]  Krister Segerberg,et al.  Modal logic and philosophy , 2007, Handbook of Modal Logic.

[20]  Erich Grädel,et al.  Why are Modal Logics so Robustly Decidable? , 2001, Bull. EATCS.

[21]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[22]  Günter Asser,et al.  Zeitschrift für mathematische Logik und Grundlagen der Mathematik , 1955 .

[23]  Harald Ganzinger,et al.  Resolution Theorem Proving , 2001, Handbook of Automated Reasoning.

[24]  A. Salomaa,et al.  Current Trends in Theoretical Computer Science, Entering the 21th Century , 2001 .

[25]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[26]  Renate A. Schmidt,et al.  Resolution is a Decision Procedure for Many Propositional Modal Logics , 1996, Advances in Modal Logic.

[27]  Luis Fariñas del Cerro MOLOG: A system that extends PROLOG with modal logic , 1986 .

[28]  Saturation-based decision procedures for extensions of the guarded fragment , 2006 .

[29]  Grigori Mints Resolution calculi for modal logics , 1989 .

[30]  Andrei Voronkov,et al.  Current trends in theoretical computer science: entering the 21st centuary , 2001 .

[31]  Paul Bernays,et al.  Grundlagen der Mathematik. Band I , 1939 .

[32]  Boris Motik,et al.  A Resolution-Based Decision Procedure for $\boldsymbol{\mathcal{SHOIQ}}$ , 2008, Journal of Automated Reasoning.

[33]  Krzysztof R. Apt,et al.  Logics and Models of Concurrent Systems , 1989, NATO ASI Series.

[34]  H. Ganzinger,et al.  Equational Reasoning in Saturation-Based Theorem Proving , 1998 .

[35]  Daniel Gorín,et al.  Ordered Resolution with Selection for H(@) , 2005, LPAR.

[36]  Jacques Herbrand Recherches sur la théorie de la démonstration , 1930 .

[37]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[38]  Martin Giese,et al.  Hilbert ’ s-Terms in Automated Theorem Proving , 2007 .

[39]  Ullrich Hustadt,et al.  Mechanised Reasoning and Model Generation for Extended Modal Logics , 2003, Theory and Applications of Relational Structures as Knowledge Instruments.

[40]  Renate A. Schmidt,et al.  A new methodology for developing deduction methods , 2009, Annals of Mathematics and Artificial Intelligence.

[41]  Luis Fariñas del Cerro,et al.  MOLOG: a Modal PROLOG , 1988, CADE.

[42]  Christoph Weidenbach,et al.  System Description: SpassVersion 3.0 , 2007, CADE.

[43]  Martin Giese,et al.  Hilbert's epsilon-Terms in Automated Theorem Proving , 1999, TABLEAUX.

[44]  Martín Abadi,et al.  Modal Theorem Proving , 1986, CADE.

[45]  Albert Rubio,et al.  Paramodulation-Based Theorem Proving , 2001, Handbook of Automated Reasoning.

[46]  Andrei Voronkov,et al.  Vampire 1.1 (System Description) , 2001, IJCAR.

[47]  Patrice Enjalbert,et al.  Strategies for modal resolution: Results and problems , 2004, Journal of Automated Reasoning.

[48]  Luis Fariñas del Cerro A Simple Deduction Method for Modal Logic , 1982, Inf. Process. Lett..

[49]  Grigori Mints,et al.  Gentzen-type systems and resolution rules. Part I. Propositional logic , 1990, Conference on Computer Logic.

[50]  Balder ten Cate,et al.  Hybrid logics , 2007, Handbook of Modal Logic.

[51]  Clare Dixon,et al.  Clausal resolution for normal modal logics , 2007, J. Algorithms.

[52]  A. Leisenring Mathematical logic and Hilbert's ε-symbol , 1971 .

[53]  Andrei Voronkov,et al.  Algorithms, Datastructures, and other Issues in Efficient Automated Deduction , 2001, IJCAR.

[54]  Melvin Fitting,et al.  Destructive Modal Resolution , 1990, J. Log. Comput..

[55]  Stephan Merz,et al.  Model Checking , 2000 .

[56]  Renate A. Schmidt Decidability by Resolution for Propositional Modal Logics , 2004, Journal of Automated Reasoning.

[57]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[58]  Peter F. Patel-Schneider,et al.  DLP System Description , 1998, Description Logics.

[59]  Moshe Y. Vardi Why is Modal Logic So Robustly Decidable? , 1996, Descriptive Complexity and Finite Models.

[60]  Patrice Enjalbert,et al.  Modal Resolution in Clausal Form , 1989, Theor. Comput. Sci..

[61]  Hans Jürgen Ohlbach,et al.  A Resolution Calculus for Modal Logics , 1988, CADE.

[62]  Luis Fariñas del Cerro,et al.  A Modal Herbrand's Property , 1986, Math. Log. Q..

[63]  Maarten de Rijke,et al.  Tree-based Heuristics in Modal Theorem Proving , 2000, ECAI.