Quality-aware coordination in public sensing

The evolution and proliferation of mobile sensing platforms such as mobile phones, enables services that analyze and adjust to the state of the real world. Billions of mobile phones around the globe seamlessly integrated into our life enable the vision of public sensing, i.e., monitoring and detecting a variety of physical phenomena by continuously collecting an abundance of sensor data. To exploit the enormous sensing capabilities, sensing may not interfere with normal operation of mobile phones. Furthermore, since mobile phones are battery powered, sensor data collection needs to be energy efficient and, thus, limited to the required data. Therefore, this dissertation presents a public sensing approach that opportunistically collects sensor data. To specify and assess the quality of the data, spatial and temporal coverage metrics are devised. Virtual sensors are introduced as a data-centric abstraction to cope with the dynamic availability of mobile phones by decoupling applications from physical devices. More precisely, this dissertation addresses three major classes of virtual sensors that allow applications to request sensor data intuitively based on spatial, temporal, and quality requirements. For each of the three classes of virtual sensors, this dissertation presents centralized and distributed algorithms for the selection and coordination of mobile phones according to the sensing requirements, while minimizing the energy consumption. In order to cope with the varying availability of physical sensors, the dissertation shows how to monitor the progress of sensing and how to adapt sensing to changes of movement. Moreover, this dissertation shows how to adapt the coordination mechanisms to the density of participating devices. As a basis for the coordination algorithms, this dissertation presents basic group communication mechanism. These mechanisms allow to address specific devices based on their symbolic location. In essence, a routing structure that mimics the location model is created and proactively maintained. With a symbolic location model that matches the structure of the virtual sensors, this communication abstraction allows to easily identify and address nodes relevant for the coordinated data acquisition of the virtual sensors. In den letzten Jahren hat die Entwicklung mobiler Endgerate und der Sensortechnologie dazu gefuhrt, dass Milliarden leistungsfahiger Sensoren uns im taglichen Leben umgeben. Mittels dieser Gerate ist es moglich, den Zustand der realen Welt zu erfassen und Anwendungen entsprechend zu adaptieren. Die Umsetzung dieser Vision ist das Ziel des Forschungsgebiets Public Sensing. Durch die Ubiquitat der mobilen Endgerate werden Erfassungsszenarien moglich, die weit uber jene der traditionellen Sensornetze hinausgehen. Zusatzlich zur Datenerfassung mit personlichem Nutzen, sind unter anderem Szenarien in den Bereichen Forschung, Wirtschaft und Stadteplanung denkbar. Die Verwirklichung dieser Szenarien hangt von der weiteren technologischen Entwicklung ab. Bereits heute sind Smartphones auserst leistungsfahig. In Zukunft wird sich die Menge der Sensoren, die in diese Gerate integriert sind, noch weiter erhohen. Daruber hinaus wird die Kommunikationsinfrastruktur vielfaltiger werden und uberall auf der Welt den Zugriff auf Sensordaten erlauben. Der Trend zur Partizipation an Projekten wie OpenStreetMap zeigt, dass eine hohe Akzeptanz des Public Sensing zu erwarten ist. Um jedoch grosflachig Public Sensing betreiben zu konnen, mussen einige Herausforderungen bewaltigt werden. Die Teilnahme an solchen Aktivitaten muss fur die Besitzer der mobilen Endgerate moglichst einfach sein und sie darf die primaren Funktionen der Gerate nicht negativ beeinflussen. Dies erfordert in erster Linie eine energieschonende Datenerfassung und somit nur die Erfassung der tatsachlich benotigten Daten. Weiterhin bedeutet das aber auch, dass die Mobilitat der Nutzer nicht kontrolliert werden kann. Daruber hinaus ist es notwendig die Qualitat der erfassten Daten zu bewerten und gegebenenfalls auch Daten bestimmter Qualitat anfordern zu konnen. Fur beides sind entsprechende Metriken notwendig. Eine weitere Herausforderung ist die hohe Dynamik eines solchen Systems. Deshalb mussen Anwendungen von den physischen Geraten zur Datenerfassung entkoppelt werden. Der Fokus dieser Dissertation lasst sich anhand mehrerer Dimensionen aufzeigen. Die erste Dimension ist die Grosenordnung des betrachteten Systems. Hier liegt der Fokus auf grosen Systemen, die die Kombination vieler Einzelmessung erfordern, um ein Phanomen als Ganzes abzubilden. Die zweite Dimension ist der Grad der Nutzerbeteiligung. Hier liegt der Fokus auf einem System das ohne aktive Teilnahme der Nutzer auskommt und somit die geringste Einschrankung fur den Nutzer bedeutet. Die dritte Dimension betrifft das Kommunikationssystem. Da hier in Zukunft von hybriden Netzen auszugehen ist, legt diese Dissertation den Fokus auf eben diese. Diese Dissertation umfasst die Beobachtung von Umweltphanomenen und von mobilen Objekten. Diese Dissertation liefert mehrere Beitrage zum Stand der Wissenschaft. Zunachst werden eine Schichtenarchitektur sowie eine datenzentrische Schnittstelle prasentiert. Kern dieser Schnittstelle sind die sog. virtuellen Sensoren, die es Anwendungen erlauben, Daten mit definiertem raumlichem, zeitlichem und qualitativem Bezug anzufordern. Der zweite Beitrag dieser Dissertation sind drei Metriken, um Qualitatsanforderungen zu spezifizieren: raumliche, zeitliche und raumlich-zeitliche Abdeckung. Der dritte Beitrag sind zentralisierte sowie verteilte Algorithmen zur Datenerfassung entsprechend der Anforderungen hinsichtlich der drei Metriken. Ziel dieser Algorithmen ist die effiziente Datenerfassung entsprechend der Anforderungen. Zum Umgang mit der Dynamik des Systems bietet die Dissertation Mechanismen zur Uberwachung des Erfassungsfortschritts und zur Adaption der Erfassung. Daruber hinaus beschreibt die Dissertation Mechanismen zur Gruppenkommunikation basierend auf symbolischen Lokationsmodellen.

[1]  Albrecht Schmidt,et al.  There is more to context than location , 1999, Comput. Graph..

[2]  Azman Osman Lim,et al.  A Hybrid Centralized Routing Protocol for 802.11s WMNs , 2008, Mob. Networks Appl..

[3]  Matthias Großmann,et al.  An Abstract Processing Model for the Quality of Context Data , 2009, QuaCon.

[4]  Frank Dürr,et al.  Efficient Capturing of Environmental Data with Mobile RFID Readers , 2009, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware.

[5]  Frank Dürr,et al.  Geocast routing of symbolically addressed messages in Wireless Mesh Networks , 2010, 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[6]  Nicholas R. Jennings,et al.  A Decentralised Coordination Algorithm for Maximising Sensor Coverage in Large Sensor Networks , 2010, AAMAS 2010.

[7]  Ling Ma,et al.  Acoustic environment as an indicator of social and physical context , 2005, Personal and Ubiquitous Computing.

[8]  Daniela Nicklas,et al.  Efficiently Managing Context Information for Large-Scale Scenarios , 2005, Third IEEE International Conference on Pervasive Computing and Communications.

[9]  Rahim Tafazolli,et al.  uDirect: A novel approach for pervasive observation of user direction with mobile phones , 2011, 2011 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[10]  Maarten Vergauwen,et al.  Web-based 3D Reconstruction Service , 2006, Machine Vision and Applications.

[11]  Zhigang Liu,et al.  The Jigsaw continuous sensing engine for mobile phone applications , 2010, SenSys '10.

[12]  Vijay Erramilli,et al.  Energy Efficient Offloading of 3G Networks , 2011, 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems.

[13]  Florian Michahelles,et al.  Supporting a mobile lost and found community , 2008, Mobile HCI.

[14]  Feng Zhao,et al.  Location and Mobility in a Sensor Network of Mobile Phones , 2007 .

[15]  Seungjoon Lee,et al.  Efficient geographic routing in multihop wireless networks , 2005, MobiHoc '05.

[16]  Carlo Curino,et al.  A data-oriented survey of context models , 2007, SGMD.

[17]  Stefan Parkvall,et al.  LTE: the evolution of mobile broadband , 2009, IEEE Communications Magazine.

[18]  Pedro José Marrón,et al.  Integrating sensor networks in pervasive computing environments using symbolic coordinates , 2008, 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE '08).

[19]  Donald F. Towsley,et al.  Mobility improves coverage of sensor networks , 2005, MobiHoc '05.

[20]  Yi Wang,et al.  Towards energy efficient mobile sensing , 2011 .

[21]  Nitin H. Vaidya,et al.  Anycasting-based protocol for geocast service in mobile ad hoc networks , 2003, Comput. Networks.

[22]  Maria E. Niessen,et al.  Citizen noise pollution monitoring , 2009, D.GO.

[23]  Deborah Estrin,et al.  Using mobile phones to determine transportation modes , 2010, TOSN.

[24]  Deborah Estrin,et al.  Recruitment Framework for Participatory Sensing Data Collections , 2010, Pervasive.

[25]  R.M. White,et al.  A Sensor Classification Scheme , 1987, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  Wei Pan,et al.  SoundSense: scalable sound sensing for people-centric applications on mobile phones , 2009, MobiSys '09.

[27]  Frank Dürr,et al.  An Adaptive Overlay Network for World-Wide Geographic Messaging , 2008, 22nd International Conference on Advanced Information Networking and Applications (aina 2008).

[28]  Albrecht Schmidt,et al.  Multi-Sensor Context-Awareness in Mobile Devices and Smart Artifacts , 2002, Mob. Networks Appl..

[29]  Christian Maihöfer,et al.  A survey of geocast routing protocols , 2004, IEEE Commun. Surv. Tutorials.

[30]  Marcelo G. Rubinstein,et al.  Routing Metrics and Protocols for Wireless Mesh Networks , 2008, IEEE Network.

[31]  G. Nürnberg Extracting line string features from GPS logs , 2008 .

[32]  Tom Drummond,et al.  ProFORMA: Probabilistic Feature-based On-line Rapid Model Acquisition , 2009, BMVC.

[33]  Mirco Musolesi,et al.  Urban sensing systems: opportunistic or participatory? , 2008, HotMobile '08.

[34]  Kyunghan Lee,et al.  Mobile data offloading: how much can WiFi deliver? , 2010, SIGCOMM 2010.

[35]  Ramachandran Ramjee,et al.  Nericell: rich monitoring of road and traffic conditions using mobile smartphones , 2008, SenSys '08.

[36]  Tracy Camp,et al.  A survey of mobility models for ad hoc network research , 2002, Wirel. Commun. Mob. Comput..

[37]  Y.-K. Lee,et al.  Human Activity Recognition via an Accelerometer-Enabled-Smartphone Using Kernel Discriminant Analysis , 2010, 2010 5th International Conference on Future Information Technology.

[38]  Michael Peter Presentation and Evaluation of Inconsistencies in Multiply Represented 3D Building Models , 2009, QuaCon.

[39]  Yang Zhang,et al.  CarTel: a distributed mobile sensor computing system , 2006, SenSys '06.

[40]  Stephan Bohacek,et al.  Realistic mobility simulation of urban mesh networks , 2009, Ad Hoc Networks.

[41]  Paolo Medagliani,et al.  Engineering energy-efficient target detection applications in Wireless Sensor Networks , 2010, 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[42]  A. Goldsmith Communication by Means of Reflected Power , 2022 .

[43]  Yi Wang,et al.  A framework of energy efficient mobile sensing for automatic user state recognition , 2009, MobiSys '09.

[44]  Jörg Roth Ortsbezogene Anwendungen und Dienste , 2005 .

[45]  C. Maihofer,et al.  A survey of geocast routing protocols , 2004, IEEE Communications Surveys & Tutorials.

[46]  James A. Landay,et al.  MyExperience: a system for in situ tracing and capturing of user feedback on mobile phones , 2007, MobiSys '07.

[47]  Emiliano Miluzzo,et al.  Tapping into the Vibe of the city using VibN, a continuous sensing application for smartphones , 2011, SCI '11.

[48]  Jie Liu,et al.  LittleRock: Enabling Energy-Efficient Continuous Sensing on Mobile Phones , 2011, IEEE Pervasive Computing.

[49]  Pedro José Marrón,et al.  Mobility modeling of outdoor scenarios for MANETs , 2005, 38th Annual Simulation Symposium.

[50]  Kurt Rothermel,et al.  Architecture of a large-scale location service , 2002, Proceedings 22nd International Conference on Distributed Computing Systems.

[51]  Romit Roy Choudhury,et al.  PhonePoint pen: using mobile phones to write in air , 2009, MobiHeld '09.

[52]  Sangkeun Lee,et al.  A Study on Issues in Context-Aware Systems Based on a Survey and Service Scenarios , 2009, 2009 10th ACIS International Conference on Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing.

[53]  David Roberts,et al.  MobSens: Making Smart Phones Smarter , 2009, IEEE Pervasive Computing.

[54]  Frank Dürr,et al.  StreamShaper: Coordination algorithms for participatory mobile urban sensing , 2010, The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010).

[55]  Nitin H. Vaidya,et al.  RFID-based networks: exploiting diversity and redundancy , 2008, MOCO.

[56]  Emiliano Miluzzo,et al.  A survey of mobile phone sensing , 2010, IEEE Communications Magazine.

[57]  Deborah Estrin,et al.  Data-Centric Storage in Sensornets with GHT, a Geographic Hash Table , 2003, Mob. Networks Appl..

[58]  Frank Dürr,et al.  Participatory sensing algorithms for mobile object discovery in urban areas , 2011, 2011 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[59]  Kurt Rothermel,et al.  Meeting subscriber‐defined QoS constraints in publish/subscribe systems , 2011, Concurr. Comput. Pract. Exp..

[60]  MADPastry : A DHT Substrate for Practicably Sized MANETs , 2010 .

[61]  Wolfgang Kellerer,et al.  Objects Calling Home: Locating Objects Using Mobile Phones , 2007, Pervasive.

[62]  Ralf Steinmetz,et al.  WBroximity: Mobile participatory sensing for WLAN- and Bluetooth-based positioning , 2010, IEEE Local Computer Network Conference.

[63]  Sivan Toledo,et al.  VTrack: accurate, energy-aware road traffic delay estimation using mobile phones , 2009, SenSys '09.

[64]  Abhimanyu Das,et al.  Sensor Selection for Minimizing Worst-Case Prediction Error , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[65]  Daniel W. Engels,et al.  HiQ: a hierarchical Q-learning algorithm to solve the reader collision problem , 2006, International Symposium on Applications and the Internet Workshops (SAINTW'06).

[66]  Richard Edward Honicky,et al.  Automatic calibration of sensor-phones using gaussian processes , 2007 .

[67]  Ahmed Helmy,et al.  Modeling and analyzing the impact of location inconsistencies on geographic routing in wireless networks , 2004, MOCO.

[68]  Klaus-Werner Gurgel Erfahrungen mit dem Satelliten-Navigationssystem GPS-Genauigkeiten an Land und auf See , 1991 .

[69]  Emiliano Miluzzo,et al.  The BikeNet mobile sensing system for cyclist experience mapping , 2007, SenSys '07.

[70]  Stefano Chessa,et al.  GPS free coordinate assignment and routing in wireless sensor networks , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[71]  Biswanath Mukherjee,et al.  Wireless sensor network survey , 2008, Comput. Networks.

[72]  Eiman Kanjo,et al.  NoiseSPY: A Real-Time Mobile Phone Platform for Urban Noise Monitoring and Mapping , 2010, Mob. Networks Appl..

[73]  Mika Raento,et al.  Smartphones , 2009 .

[74]  Patrick Weber,et al.  OpenStreetMap: User-Generated Street Maps , 2008, IEEE Pervasive Computing.

[75]  Deborah Estrin,et al.  Habitat monitoring with sensor networks , 2004, CACM.

[76]  D. Diamond Internet-scale sensing. , 2004, Analytical chemistry.

[77]  Brad Karp,et al.  GPSR: greedy perimeter stateless routing for wireless networks , 2000, MobiCom '00.

[78]  Suman Nath,et al.  SenseWeb: An Infrastructure for Shared Sensing , 2007, IEEE MultiMedia.

[79]  Henry A. Kautz,et al.  Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields , 2007, Int. J. Robotics Res..

[80]  Frank Dürr,et al.  Symbolic Routing for Location-Based Services in Wireless Mesh Networks , 2010, 2010 24th IEEE International Conference on Advanced Information Networking and Applications.

[81]  Deborah Estrin,et al.  Network System Challenges in Selective Sharing and Verification for Personal, Social, and Urban-Scale Sensing Applications , 2006, HotNets.

[82]  Andreas Krause,et al.  Toward Community Sensing , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[83]  Emiliano Miluzzo,et al.  EyePhone: activating mobile phones with your eyes , 2010, MobiHeld '10.

[84]  Emiliano Miluzzo,et al.  CenceMe - Injecting Sensing Presence into Social Networking Applications , 2007, EuroSSC.

[85]  A. Bayen,et al.  A traffic model for velocity data assimilation , 2010 .

[86]  Eric A. Brewer,et al.  N-smarts: networked suite of mobile atmospheric real-time sensors , 2008, NSDR '08.

[87]  Mirco Musolesi,et al.  The Second Life of a Sensor Integrating Real-world Experience in Virtual Worlds using Mobile Phones , 2008 .

[88]  Dermot Diamond,et al.  Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices , 2008, Sensors.

[89]  Timothy Menard,et al.  Determining time to traverse road sections based on mapping discrete GPS vehicle data to continuous flows , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[90]  Marco Bessi A survey about context-aware middleware , 2009 .

[91]  R. Horowitz,et al.  Traffic density estimation with the cell transmission model , 2003, Proceedings of the 2003 American Control Conference, 2003..

[92]  Vikas Kumar,et al.  CrowdSearch: exploiting crowds for accurate real-time image search on mobile phones , 2010, MobiSys '10.

[93]  Satish Kumar,et al.  Next century challenges: scalable coordination in sensor networks , 1999, MobiCom.

[94]  Anind K. Dey,et al.  What Have You Done with Location-Based Services Lately? , 2009, IEEE Pervasive Computing.

[95]  Di Huang,et al.  Pedestrian Simulation Modeling for World Expo 2010 Shanghai , 2009 .

[96]  Mark H. Hansen,et al.  Urban sensing: out of the woods , 2008, CACM.

[97]  C. Becker,et al.  Ubiquitous Computing – More than Computing Anytime Anyplace ? , 2003 .

[98]  Eemil Lagerspetz,et al.  BeTelGeuse: A Platform for Gathering and Processing Situational Data , 2009, IEEE Pervasive Computing.

[99]  Andrew T. Campbell,et al.  Fast track article: Bubble-sensing: Binding sensing tasks to the physical world , 2010 .

[100]  Anthony Steed,et al.  Using tracked mobile sensors to make maps of environmental effects , 2006, Personal and Ubiquitous Computing.

[101]  Frank Dürr,et al.  On a Generic Uncertainty Model for Position Information , 2009, QuaCon.

[102]  Suman Nath,et al.  Privacy-Preserving Reconstruction of Multidimensional Data Maps in Vehicular Participatory Sensing , 2010, EWSN.

[103]  M. Chalmers,et al.  Mobile Pollution Mapping in the City , 2005 .

[104]  Frank Dürr,et al.  MapCorrect: Automatic correction and validation of road maps using public sensing , 2011, 2011 IEEE 36th Conference on Local Computer Networks.

[105]  James Demmel,et al.  Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[106]  Paolo Bellavista,et al.  Mobeyes: smart mobs for urban monitoring with a vehicular sensor network , 2006, IEEE Wireless Communications.

[107]  Gaetano Borriello,et al.  Location Systems for Ubiquitous Computing , 2001, Computer.

[108]  Rosalind W. Picard,et al.  Heartphones: Sensor Earphones and Mobile Application for Non-obtrusive Health Monitoring , 2009, 2009 International Symposium on Wearable Computers.

[109]  Kay Römer,et al.  The design space of wireless sensor networks , 2004, IEEE Wireless Communications.

[110]  Anind K. Dey,et al.  Understanding and Using Context , 2001, Personal and Ubiquitous Computing.

[111]  Eric Paulos,et al.  inAir: measuring and visualizing indoor air quality , 2009, UbiComp.

[112]  Christophe Rosenberger,et al.  Secure payment with NFC mobile phone in the SmartTouch project , 2008, 2008 International Symposium on Collaborative Technologies and Systems.

[113]  James H. Aylor,et al.  Computer for the 21st Century , 1999, Computer.

[114]  Gary M. Weiss,et al.  Activity recognition using cell phone accelerometers , 2011, SKDD.

[115]  Matt Welsh,et al.  CitySense: A Vision for an Urban-Scale Wireless Networking Testbed , 2007 .

[116]  Shaohan Hu,et al.  NeuroPhone: brain-mobile phone interface using a wireless EEG headset , 2010, MobiHeld '10.

[117]  Ryan Newton,et al.  The pothole patrol: using a mobile sensor network for road surface monitoring , 2008, MobiSys '08.

[118]  Nisheeth Shrivastava,et al.  Target tracking with binary proximity sensors: fundamental limits, minimal descriptions, and algorithms , 2006, SenSys '06.

[119]  Kurt Rothermel,et al.  Making the World Wide Space happen: New challenges for the Nexus context platform , 2009, 2009 IEEE International Conference on Pervasive Computing and Communications.

[120]  Lothar Thiele,et al.  OpenSense: open community driven sensing of environment , 2010, IWGS '10.

[121]  Charles E. Perkins,et al.  Ad hoc On-Demand Distance Vector (AODV) Routing , 2001, RFC.

[122]  Emiliano Miluzzo,et al.  CaliBree: A Self-calibration System for Mobile Sensor Networks , 2008, DCOSS.

[123]  Mirco Musolesi,et al.  The Rise of People-Centric Sensing , 2008, IEEE Internet Comput..

[124]  D. Manjunath,et al.  On the coverage process of a moving point target in a non-uniform dynamic sensor field , 2009, IEEE Journal on Selected Areas in Communications.

[125]  Beihong Jin,et al.  On collaborative tracking of a target group using binary proximity sensors , 2010, J. Parallel Distributed Comput..

[126]  Ling Bao,et al.  Activity Recognition from User-Annotated Acceleration Data , 2004, Pervasive.

[127]  Tarek F. Abdelzaher,et al.  GreenGPS: a participatory sensing fuel-efficient maps application , 2010, MobiSys '10.

[128]  Jie Liu,et al.  SpeakerSense: Energy Efficient Unobtrusive Speaker Identification on Mobile Phones , 2011, Pervasive.

[129]  Cristian Borcea,et al.  The Urbanet Revolution: Sensor Power to the People! , 2007, IEEE Pervasive Computing.

[130]  Bernhard Mitschang,et al.  On building location aware applications using an open platform based on the NEXUS Augmented World Model , 2003, Software and Systems Modeling.

[131]  Ling Liu,et al.  MobiEyes: A Distributed Location Monitoring Service Using Moving Location Queries , 2006, IEEE Transactions on Mobile Computing.

[132]  Lothar Thiele,et al.  Prototyping Wireless Sensor Network Applications with BTnodes , 2004, EWSN.

[133]  Steve Benford,et al.  MobGeoSen: facilitating personal geosensor data collection and visualization using mobile phones , 2007, Personal and Ubiquitous Computing.

[134]  Deborah Estrin,et al.  Intelligent fluid infrastructure for embedded networks , 2004, MobiSys '04.

[135]  Andrew T. Campbell,et al.  Ambient beacon localization: using sensed characteristics of the physical world to localize mobile sensors , 2007, EmNets '07.

[136]  Tomoya Ishikawa,et al.  In-Situ 3D Indoor Modeler with a Camera and Self-contained Sensors , 2009, HCI.