Energy performance gap in building retrofit : characterization and effect on the energy saving potential

The aim of this study is to characterize the energy performance gap in retrofit of multi-family residential buildings, and to assess its potential impact on the energy savings of the Geneva post-war building stock. In a first step, we analyse 10 recently retrofitted case studies, covering around 1’100 flats. For each retrofit, the theoretical and actual energy savings for space heating are calculated on the basis of: (i) measured final energy demand for heating (SH and DHW), before and after retrofit; (ii) design value for SH after retrofit, according to the SIA 380/1. As a major result of the study, a robust statistical correlation between theoretical and actual energy savings allows to characterize the energy performance gap. In a second step, this result is used to assess a realistic energy saving potential for Geneva’s multifamily building stock. This assessment shows that, under current practice, only 42% of the theoretical energy saving potential of building retrofit could be achieved. Finally, the main reasons behind this gap are discussed, as well as its potential effect on the goals of the Energy Strategy 2050.

[1]  Catalina Spataru,et al.  A Review of the Regulatory Energy Performance Gap and Its Underlying Causes in Non-domestic Buildings , 2016, Front. Mech. Eng..

[2]  Dino Bouchlaghem,et al.  Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap , 2012 .

[3]  P. Berkhout,et al.  Defining the rebound effect , 2000 .

[4]  Jean-Marc Zgraggen Bâtiments résidentiels locatifs à haute performance énergétique : objectifs et réalités , 2010 .

[5]  S. Sorrell,et al.  Empirical estimates of the direct rebound effect: A review , 2009 .

[6]  Daša Majcen,et al.  Predicting energy consumption and savings in the housing stock: A performance gap analysis in the Netherlands , 2016 .

[7]  D. Greene,et al.  Energy efficiency and consumption — the rebound effect — a survey , 2000 .

[8]  Monika Hall,et al.  „Performance Gap“ in der Schweiz – Brisanz, Ursachen und Einflüsse auf die Differenz von geplantem Energiebedarf und gemessenem Verbrauch in Gebäuden , 2014 .

[9]  Pierre Hollmuller,et al.  Rénovation Minergie d’un bâtiment résidentiel de plus de 5’000 m² : bilan énergétique et financier , 2014 .

[10]  Rory V. Jones,et al.  The building energy performance gap: Up close and personal , 2014 .

[11]  Ray Galvin,et al.  Introducing the prebound effect: the gap between performance and actual energy consumption , 2012 .

[12]  Pieter de Wilde,et al.  The gap between predicted and measured energy performance of buildings: A framework for investigation , 2014 .

[13]  Jad Khoury Rénovation énergétique des bâtiments résidentiels collectifs: état des lieux, retours d’expérience et potentiels du parc genevois (soutenance) , 2014 .

[14]  Reinhard Haas,et al.  The rebound effect for space heating Empirical evidence from Austria , 2000 .

[15]  Bernard Marie Lachal,et al.  Suivi énergétique du bâtiment 40-42 de l'avenue du Gros-Chêne à Onex (GE), rénové selon le standard MINERGIE® Aspects techniques et économiques , 2012 .

[16]  Maxime Raynaud,et al.  Evaluation ex-post de l'efficacité de solutions de rénovation énergétique en résidentiel Doctorat P arisTech , 2014 .