Fatigue failure analysis of stay cables with initial defects: Ewijk bridge case study

[1]  Gongkang Fu,et al.  STRENGTH OF PARALLEL WIRE CABLES FOR SUSPENSION BRIDGES , 2000 .

[2]  Chanakya Arya,et al.  Eurocode 3: Design of steel structures , 2018, Design of Structural Elements.

[3]  K. Wallin Objective assessment of scatter and size effects in the Eurofracture toughness data set , 2011 .

[4]  Maurizio Guida,et al.  A Bayesian analysis of fatigue data , 2010 .

[5]  Tong Guo,et al.  Fatigue reliability analysis of steel bridge details based on field-monitored data and linear elastic fracture mechanics , 2013 .

[6]  Jeong-In Suh,et al.  Experimental study on fatigue behaviour of wire ropes , 2000 .

[7]  Roman Geier Evolution of Stay Cable Monitoring Using Ambient Vibration , 2004 .

[8]  Mohammed Raoof,et al.  Mechanism of fretting fatigue in steel cables , 1994 .

[9]  Marios K. Chryssanthopoulos,et al.  Fatigue and fracture simulation of welded bridge details through a bi-linear crack growth law , 2004 .

[10]  M. Raoof,et al.  Determination of recovery length in spiral strands , 1994 .

[11]  Alberto Carpinteri,et al.  Self-similarity and crack growth instability in the correlation between the Paris’ constants , 2007 .

[12]  Mo Shing Cheung,et al.  Probabilistic fatigue and fracture analyses of steel bridges , 2003 .

[13]  W. J. Mills,et al.  Review and synthesis of stress intensity factor solutions applicable to cracks in bolts , 1988 .

[14]  F. M. Burdekin,et al.  Engineering critical analyses to BS 7910 — the UK guide on methods for assessing the acceptability of flaws in metallic structures , 2000 .

[15]  Royce Forman,et al.  Behavior of surface and corner cracks subjected to tensile and bending loads in a Ti-6Al-4V alloy , 1992 .

[16]  E. Gdoutos,et al.  Fracture Mechanics , 2020, Encyclopedic Dictionary of Archaeology.

[17]  CABLE SAFETY FACTORS FOR FOUR SUSPENSION BRIDGES , 1997 .

[18]  H. Daniels The statistical theory of the strength of bundles of threads. I , 1945, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  D. V. Edmonds,et al.  The relationship between the parameters C and m of Paris' law for fatigue crack growth in a low-alloy steel , 1978 .

[20]  J. Heerens,et al.  Fracture toughness characterisation in the ductile-to-brittle transition and upper shelf regimes using pre-cracked Charpy single-edge bend specimens , 2005 .

[21]  J Johan Maljaars,et al.  Probabilistic model for fatigue crack growth and fracture of welded joints in civil engineering structures , 2012 .

[22]  R. Rackwitz,et al.  Aspects of parallel wire cable reliability , 2003 .

[23]  Masoud Rabiei,et al.  Quantitative methods for structural health management using in situ acoustic emission monitoring , 2013 .

[24]  Glauco Feltrin,et al.  Long-term monitoring of cable stays with a wireless sensor network , 2010 .

[25]  村上 敬宜,et al.  Stress intensity factors handbook , 1987 .

[26]  Bruce R. Ellingwood,et al.  Stochastic fatigue crack growth in steel structures subjected to random loading , 1998 .

[27]  Dan M. Frangopol,et al.  Fatigue reliability assessment of retrofitted steel bridges integrating monitored data , 2010 .

[28]  Mohammed Raoof,et al.  RECOVERY LENGTH IN MULTILAYERED SPIRAL STRANDS , 1995 .

[29]  Xuefei Guan,et al.  Model selection, updating, and averaging for probabilistic fatigue damage prognosis , 2011 .

[30]  M Raoof AXIAL FATIGUE LIFE PREDICTION OF STRUCTURAL CABLES FROM FIRST PRINCIPLES. , 1991 .

[31]  Roman Geier,et al.  Cable Force Determination for the Danube Channel Bridge in Vienna , 2005 .