Abstract Systematic measurements of dendrite tip radius and growth velocity in succinonitrile reveal that consideration of dendrite tip stability should be incorporated into the heat transfer theory to determine the steady-state dendritic growth condition. The dendritic stability criterion measured is 2xd0 VR2 = 0.0195, where V is the dendritic growth velocity. R is the dendritic up radius, x is the liquid thermal diffusivity, and d0 is a capillary length defined in the text. Several dendritic stability models are reviewed and discussed in comparison to the present experimental results. Resume Les mesures systematiques des rayons de courbure au sommet des dendrites et de leur vitesse de croissance dans le cas du succinonitrile revellent que la stabilite du sommet des dendrites doit etre prise en compte dan les mecanismes de transfert de chaleur pour determiner la condition de croissance dendritique suivant un regime stable. Le critere de stabilite des dendrites a ete mesure egal a 2x d0 VR2 = 0.0195. ou V est la vitesse de croissance dendritique. R le rayon de courbure au sommet des dendrites. x la conductivite thermique dans le liquide, et d0 un distance, caracteristique de l'energie de surface, definie dans le texte. Plusieurs modeles de stabilite des dendrites sont repris et confrontes aux resultats experimentaux presentes. Zusammenfassung Systematische Messungen des Radius einer Dendritenspitze und seiner Wachstumsgeschwindigkeit im System Succinonitril deuten darauf hin, dass man die Stabilitat der Dendritenspitze in der Theorie des Warmeaustausches einfuhren soll, um die Bedingung festzustellen, wobei eine Dendrite im stationaren Zustand wachsen kann. Die gemessene Stahilitatsbedingung lautet 2x d0 VR2 = 0.0195. wobei V die Dendriten Wachstumsgeschwindigkeit ist. R das Radius der Dendritenspitze. x die thermische Leitfahigkeit der Flussigkeit, und d0 die im folgenden Artikel definierte Kapillarlange. Einige Modelle der Dendritenstabilitat werden analysiert und im Vergleich mit den vorliegenden versuchs ergebnissen besprochen.
[1]
D. Turnbull,et al.
Theory of Crystal Growth in Undercooled Pure Liquids
,
1956
.
[2]
M. Glicksman,et al.
Comments on theoretical analyses of isenthalpic solidification
,
1968
.
[3]
W. Oldfield.
Computer model studies of dendritic growth
,
1973
.
[4]
John W. Cahn,et al.
Dendritic and spheroidal growth
,
1961
.
[5]
R. Trivedi.
Growth of dendritic needles from a supercooled melt
,
1970
.
[6]
H. Pruppacher.
Some relations between the structure of the ice-solution interface and the free growth rate of ice crystals in supercooled aqueous solutions
,
1967
.
[7]
R. Schaefer.
The validity of steady-state dendrite growth models
,
1978
.
[8]
S. Hardy.
A grain boundary groove measurement of the surface tension between ice and water
,
1977
.
[9]
R. Sekerka,et al.
Stability of a Planar Interface During Solidification of a Dilute Binary Alloy
,
1964
.
[10]
W. Tiller,et al.
Stability of the needle crystal
,
1968
.
[11]
M. Glicksman,et al.
Investigation of solid/liquid interface temperatures via isenthalpic solidification
,
1967
.
[12]
J. Hallett.
Experimental Studies of the Crystallization of Supercooled Water
,
1964
.
[13]
D. Kinderlehrer,et al.
Morphological Stability of a Particle Growing by Diffusion or Heat Flow
,
1963
.
[14]
J. Kallungal,et al.
Growth rate of an ice crystal in subcooled pure water
,
1977
.
[15]
R. Doherty,et al.
Further analysis of dendritic growth data for succinonitrile
,
1978
.
[16]
Martin E. Glicksman,et al.
Dendritic growth-A test of theory
,
1976
.
[17]
H. Müller-Krumbhaar,et al.
THEORY OF DENDRITIC GROWTH—I. ELEMENTS OF A STABILITY ANALYSIS
,
1978
.
[18]
M. Glicksman,et al.
Capillaritl-limited steadl-state dendritic grolth—I. Theoretical development☆
,
1974
.