Improving the performance and accuracy of time series modeling based on autonomic computing systems

[1]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[2]  Michael J. Piovoso,et al.  Kalman filter recipes for real-time image processing , 2003, Real Time Imaging.

[3]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[4]  Achim Klenke,et al.  Probability theory - a comprehensive course , 2008, Universitext.

[5]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[6]  Ilenia Tinnirello,et al.  Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[7]  Paul F. M. J. Verschure,et al.  A note on chaotic behavior in simple neural networks , 1990, Neural Networks.

[8]  R. Mañé,et al.  On the dimension of the compact invariant sets of certain non-linear maps , 1981 .

[9]  Michael R. Davenport,et al.  Continuous-time temporal back-propagation with adaptable time delays , 1993, IEEE Trans. Neural Networks.

[10]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[11]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[12]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[13]  David B. Fogel An information criterion for optimal neural network selection , 1991, IEEE Trans. Neural Networks.

[14]  F. Takens Detecting strange attractors in turbulence , 1981 .

[15]  M. Buhmann Radial Basis Functions: Theory and Implementations: Implementations , 2003 .

[16]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[17]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[18]  K. Pawelzik,et al.  Optimal Embeddings of Chaotic Attractors from Topological Considerations , 1991 .

[19]  Meng-jia Zeng,et al.  A Method Using Genetic Algorithm to Optimize Neural Networks Applied in Sustainable Development Ability Appraisal , 2009, 2009 International Conference on Electronic Computer Technology.

[20]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[21]  O. Bretscher Linear Algebra with Applications , 1996 .

[22]  Eric A. Wan,et al.  Time series prediction by using a connectionist network with internal delay lines , 1993 .

[23]  Henry Leung,et al.  Prediction of noisy chaotic time series using an optimal radial basis function neural network , 2001, IEEE Trans. Neural Networks.

[24]  D. B. Fogel,et al.  AN INFORMATION CRITERION FOR OPTIMAL NEURAL NETWORK SELECTION , 1990, 1990 Conference Record Twenty-Fourth Asilomar Conference on Signals, Systems and Computers, 1990..

[25]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[26]  Antonio Politi,et al.  Lyapunov exponent , 2013, Scholarpedia.

[27]  E. Brähler,et al.  A multivariate time-series approach to marital interaction , 2005, Psycho-social medicine.

[28]  Chris Bishop,et al.  Improving the Generalization Properties of Radial Basis Function Neural Networks , 1991, Neural Computation.

[29]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[30]  W. Penny,et al.  Multivariate autoregressive models , 2007 .

[31]  Miroslaw Pawlak,et al.  Optimization of Centers' Positions for RBF Nets with Generalized Kernels , 2004, ICAISC.

[32]  Judith E. Dayhoff,et al.  Trajectory production with the adaptive time-delay neural network , 1995, Neural Networks.

[33]  Ujjwal Kumar,et al.  A Multivariate Time Series Approach to Study the Interdependence among O3, NOx, and VOCs in Ambient Urban Atmosphere , 2009 .

[34]  R. Adler,et al.  Non-Linear Models for Time Series Using Mixtures of Autoregressive Models , 2000 .

[35]  Noureddine Zerhouni,et al.  Recurrent radial basis function network for time-series prediction , 2003 .

[36]  Babak Nadjar Araabi,et al.  Predicting Chaotic Time Series Using Neural and Neurofuzzy Models: A Comparative Study , 2006, Neural Processing Letters.

[37]  The fractal research and predicating on the times series of sunspot relative number , 1999 .

[38]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[39]  Yongsheng Zhang,et al.  Chaotic Time Series Prediction Based on Local-Region Multi-steps Forecasting Model , 2004, ISNN.

[40]  Kevin Judd,et al.  Modelling the dynamics of nonlinear time series using canonical variate analysis , 2002 .

[41]  Rodrigo Fernandes de Mello,et al.  A self-organizing neural network for detecting novelties , 2007, SAC '07.

[42]  Markus Kohler,et al.  Using the Kalman Filter to track Human Interactive Motion - Modelling and Initialization of the Kalm , 1997 .

[43]  Y. Wong,et al.  Differentiable Manifolds , 2009 .

[44]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[45]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[46]  Yves Lecourtier,et al.  Optimizing a Neural Network Architecture with an Adaptive Parameter Genetic Algorithm , 1997, IWANN.

[47]  Geoffrey E. Hinton,et al.  Phoneme recognition using time-delay neural networks , 1989, IEEE Trans. Acoust. Speech Signal Process..

[48]  Alfredo Medio,et al.  Chaotic Dynamics: Theory and Applications to Economics , 1993 .

[49]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[50]  H. Tong 13. Chaotic Dynamics: Theory and Applications to Economics , 1996 .

[51]  Richard Murch,et al.  Autonomic Computing , 2004 .

[52]  Salim Hariri,et al.  Autonomic Computing : Concepts, Infrastructure, and Applications , 2006 .

[53]  Gerhard Doblinger,et al.  An adaptive Kalman filter for the enhancement of noisy AR signals , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[54]  Andrew Nicola Edmonds Time series prediction using supervised learning and tools from chaos theory , 1996 .